Skip to main content
Log in

Synthesis and characterisation of Gossypium hirsutum seeds extract nanoencapsulated in silica microparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanoencapsulation of pharmaceutically active natural compounds into porous systems through sol–gel method leads to new drug delivery materials with sustained release behaviour of the entrapped pharmaceuticals. Properties of inorganic sol–gel-derived silica microparticles loaded with cotton (Gossypium hirsutum) seeds extract are reported. Xerogels obtained by heat or freeze drying were investigated by X-ray diffraction, dynamic light scattering, differential thermal analysis (DTA)/thermogravimetric analysis (TGA), UV–Vis and fluorescence spectroscopy. Effects of drying process on both silica particles and plant extract were evaluated. In vitro release was studied in release media with pH 1.1 and 7.4. The investigated biocomposite systems display a biphasic release profile wherein the diffusion prevails over the dissolution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dave BC, Dunn B, Valentine JS, Zink JI (1996) Nanoconfined proteins and enzymes: sol–gel-based biomolecular materials. ACS Symp Ser 622:351–365

    Article  Google Scholar 

  2. Quintanar-Guerrero D, Ganem-Quintanar A, Nava-Arzaluz MG, Pinon-Segundo E (2009) Silica xerogels as pharmaceutical drug carriers. Expert Opin Drug Deliv 6:485–498

    Article  Google Scholar 

  3. Podbielska H, Ulatowska-Jarza A (2005) Sol–gel technology for biomedical engineering. Bull Pol Acad Sci Tech 53:261–271

    Google Scholar 

  4. Coradin T, Boissiere M, Livage J (2006) Sol–gel chemistry in medicinal science. Curr Med Chem 13:99–108

    Article  Google Scholar 

  5. Ponta O, Vanea E, Cheniti A, Berce P, Simon S (2012) Structural and surface characterization of nanostructured spray dried titanosilicate microspheres. Mater Chem Phys 135:863–869

    Article  Google Scholar 

  6. Radu T, Benea D, Ciceo-Lucacel R, Ponta O, Simon S (2012) Valence band dependence on thermal treatment of gold doped glasses and glass ceramics. J Appl Phys 111:034701–034705

    Article  Google Scholar 

  7. Ponta O, Mocuta H, Vasilescu M, Simon S (2011) Structural characterization of amorphous and nanostructured bismuth silicate xerogels. J Sol Gel Sci Technol 58:530–534

    Article  Google Scholar 

  8. Ulatowska A, Andrzejewski D, Maruszewski K, Podbielska H, Strek W (1999) Advantages of sol–gel technologies for biomedical applications. Proc SPIE 3567:50–58

    Article  Google Scholar 

  9. Bohrer D, Bortoluzzi F, Nascimento PC, Carvalho LM, Ramirez AG (2008) Silicate release from glass for pharmaceutical preparations. Int J Pharm 355:174–183

    Article  Google Scholar 

  10. De Gaetano F, Ambrosio L, Raucci MG, Marotta A, Catauro M (2005) Sol–gel processing of drug delivery materials and release kinetics. J Mater Sci Mater Med 16:261–265

    Article  Google Scholar 

  11. Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous sol–gel process for protein encapsulation. Chem Mater 12:2434–2441

    Article  Google Scholar 

  12. Shalev M, Miriam A (2011) Sol–gel entrapped levonorgestrel antibodies: activity and structural changes as a function of different polymer formats. Materials 4:469–486

    Article  Google Scholar 

  13. Reisfeld R (2002) Fluorescent dyes in sol–gel glasses. J Fluoresc 12:317–325

    Article  Google Scholar 

  14. Carturan G, Dal Toso R, Boninsegnab S, Dal Monteb R (2004) Encapsulation of functional cells by sol–gel silica: actual progress and perspectives for cell therapy. J Mater Chem 14:2087–2098

    Article  Google Scholar 

  15. Chakraborty S, Biswas S, Sarkar Manna J, Das S, Dey R (2011) Sol–gel derived silica–gel as a controlled delivery system of Andrographis paniculata extract and its anti-microbial efficacy. Trans Indian Indian Metals 64:189–193

    Article  Google Scholar 

  16. Khaleequr R, Arshiya S, Shafeequr R (2012) Gossypium herbaceum Linn: an ethnopharmacological review. J Pharm Sci Innov 1:1–5

    Google Scholar 

  17. Omojasola PF, Awe S (2004) The antibacterial activity of the leaf extracts of Anacardium occidentale and Gossypium hirsutum against selected micro-organisms. Biosci Res Commun 16:25–28

    Google Scholar 

  18. Choi JJ, Yoon KN, Lee SK, Lee YH, Park JH, Kim WY, Kirn JK, Kim WK (1998) Antitumor activity of the aqueous-alcoholic extracts from unripe cotton ball of Gossypium indicum. Arch Pharm Res 21:266–272

    Article  Google Scholar 

  19. Espericueta E, Martinez JR, Ortega-Zarzosa G, Gonzalez-Hernandez J (2010) Blue-shifted fluorescence spectrum in silica xerogels with incorporation of extract’s leaves. J Sol Gel Sci Technol 56:114–120

    Article  Google Scholar 

  20. Lacatusu I, Badea N, Bojin D, Iosub S, Meghea A (2009) Novel fluorescence nanostructured materials obtained by entrapment of an ornamental bush extract in hybrid silica glass. J Sol Gel Sci Technol 51:84–91

    Article  Google Scholar 

  21. Guajardo-Pacheco JM, Ortega-Zarzosa G, Martinez JR (2008) Fluorescents effects of silica xerogel induced by incorporation of chard leaves extracts and ZnO nanoparticles. Superf Vacio 21:16–19

    Google Scholar 

  22. Varoni EM, Iriti M, Rimondini L (2012) Plant products for innovative biomaterials in dentistry. Coatings 2:179–194

    Article  Google Scholar 

  23. Moraru CV, Vanea E, Magyari K, Tamasan M, Farcasanu AS, Loghin F, Simon S (2014) Silica-gadolinium particles loaded with gossypol for simultaneous therapeutic effect and MRI contrast enhancement. J Sol Gel Sci Technol 72:593–601

    Article  Google Scholar 

  24. Chandrasekaran AR, Jia CY, Theng CS, Muniandy T, Muralidharan S, Dhanaraj SA (2011) In vitro studies and evaluation of metformin marketed tablets-Malaysia. J Appl Pharm Sci 1:214–217

    Google Scholar 

  25. Rani PU, Pratyusha S (2013) Defensive role of Gossypium hirsutum L. anti-oxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. J Asia Pac Entomol 16:131–136

    Article  Google Scholar 

  26. Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A (2009) Drought tolerance in cotton: involvement of non-enzymatic ROS-scavenging compounds. J Agron Crop Sci 195:247–253

    Article  Google Scholar 

  27. Lege KE, Cothren JT, Smith CW (1995) Phenolic acid and condensed tannin concentrations of six cotton genotypes. Environ Exp Bot 35:241–249

    Article  Google Scholar 

  28. Hashimoto A, Kameoka T (2008) Applications of infrared spectroscopy to biochemical, food, and agricultural processes. Appl Spectrosc Rev 43:416–451

    Article  Google Scholar 

  29. Li Y, Sun S, Zhou Q, Qin Z, Tao J, Wang J, Fang X (2004) Identification of American ginseng from different region using FT-IR and two-dimensional correlation IR spectroscopy. Vib Spectrosc 36:227–232

    Article  Google Scholar 

  30. Schultz H, Baranska M (2007) Identification and quantification of valuable substances by IR and Raman spectroscopy. Vib Spectrosc 43:13–25

    Article  Google Scholar 

  31. Zavoi S, Fetea F, Ranga F, Pop RM, Baciu A, Socaciu C (2011) Comparative fingerprint and extraction yield of medicinal herb phenolics with hepatoprotective potential, as determined by UV–Vis and FT-MIR spectroscopy. Not Bot Horti Agrobot 39:82–89

    Google Scholar 

  32. Liu H, Sun S, Lv G, Chan KKC (2006) Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. Spectrochim Acta A 64:321–326

    Article  Google Scholar 

  33. Hussain K, Ismail Z, Sadikun A, Ibrahim P (2009) Evaluation of metabolic changes in fruit of Piper Sarmentosum in various seasons by metabolomics using Fourier transform infrared (FTIR) spectroscopy. Int J Pharm Clin Res 1:68–71

    Google Scholar 

  34. Araujo CST, Carvalho DC, Rezende HC, Almeida ILS, Coelho LM, Coelho NMM, Marques TL, Alves VN (2013) In: Patil Y, Rao P (eds) Applied bioremediation—active and passive approaches. Rijeka, InTech

    Google Scholar 

  35. Qiao L, Sun Y, Chen R, Fu Y, Zhang W, Li X, Chen J, Shen Y, Ye X (2014) Sonochemical effects on 14 flavonoids common in citrus: relation to stability. PLoS ONE 9:e87766

    Article  Google Scholar 

  36. Esteves B, Velez Marques A, Domingos I, Pereira H (2013) Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas Cienc Tecnol 15:245–258

    Google Scholar 

  37. Sandberg WJ, Lag M, Holme JA, Friede B, Gualtieri M, Kruszewski M, Schwarze PE, Skuland T, Refsnes M (2012) Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages. Part Fibre Toxicol 9:32

    Article  Google Scholar 

  38. Vanea E, Simon V (2013) XPS and Raman study of zinc containing silica microparticles loaded with insulin. Appl Surf Sci 280:144–150

    Article  Google Scholar 

  39. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotech Biol Med 2:8–21

    Article  Google Scholar 

  40. Albarran L, Lopez T, Quintana P, Chagoya V (2011) Controlled release of IFC-305 encapsulated in silica nanoparticles for liver cancer synthesized by sol–gel. Colloid Surf A 384:131–136

    Article  Google Scholar 

  41. Jafarzadeh M, Rahman IA, Sipaut CS (2009) Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques. J Sol Gel Sci Technol 50:328–336

    Article  Google Scholar 

  42. Ponta O, Ciceo-Lucacel R, Vulpoi A, Radu T, Simon S (2014) Molybdenum effect on the structure of SiO2–CaO–P2O5 bioactive xerogels and on their interface processes with simulated biofluids. J Biomed Mater Res A 102:3177–3185

    Article  Google Scholar 

  43. Ek S, Root A, Peussa M, Niinisto L (2001) Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim Acta 379:201–212

    Article  Google Scholar 

  44. Chakrabarti K, Kim SM, Oh EO, Whang CM (2002) Thermal analysis of poly(dimethylsiloxane)-modified silica xerogels. Mater Lett 57:192–197

    Article  Google Scholar 

  45. Ponta O, Ciceo-Lucacel R, Vulpoi A, Radu T, Simon V, Simon S (2015) Synthesis and characterisation of nanostructured silica-powellite-HAP composites. J Mater Sci 50:577–586

    Article  Google Scholar 

  46. Simon S, Ciceo-Lucacel R, Radu T, Baia L, Ponta O, Iepure A, Simon V (2012) Gold nanoparticles developed in sol–gel derived apatite-bioactive glass composites. J Mater Sci Mater Med 23:1193–1201

    Article  Google Scholar 

  47. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and RSi(OR)3 precursors. J Mol Struct 919:140–145

    Article  Google Scholar 

  48. Martinez JR, Ruiz F, Vorobiev YV, Perez-Robles F, Gonzalez-Hernandez J (1998) Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol–gel. J Chem Phys 109:7511–7514

    Article  Google Scholar 

  49. Aguiar H, Serra J, Gonzalez P, Leon B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids 355:475–480

    Article  Google Scholar 

  50. Serra J, Gonzalez P, Liste S, Serra C, Chiussi S, Leon B, Perez-Amor M, Ylanen HO, Hupa M (2003) FTIR and XPS studies of bioactive silica based glasses. J Non Cryst Solids 332:20–27

    Article  Google Scholar 

  51. Magyari K, Baia L, Vulpoi A, Simon S, Popescu O, Simon V (2014) Bioactivity evolution of the surface functionalized bioactive glasses. J Biomed Mater Res B 103:261–272

    Article  Google Scholar 

  52. Skoog DA, Crouch SR, Holler FJ (2007) Principles of instrumental analysis. Thomson Brooks/Cole, Belmont

    Google Scholar 

  53. Gamble GR, Foulk JA (2007) Quantitative analysis of cotton (Gossypium hirsutum) lint trash by fluorescence spectroscopy. J Agric Food Chem 55:4940–4943

    Article  Google Scholar 

  54. Eckhoff DA, Sutin JDB, Clegg RM, Gratton E, Rogozhina EV, Braun PV (2005) Optical characterization of ultrasmall Si nanoparticles prepared through electrochemical dispersion of bulk Si. J Phys Chem B 109:19786–19797

    Article  Google Scholar 

  55. Lakowicz JR (2006) In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 3rd edn. Springer, New Jersey

    Chapter  Google Scholar 

  56. Chakraborty S, Mitra MK, Chaudhuri MG, Sa B, Das S, Dey R (2012) Study of the release mechanism of Terminalia chebula extract from nanoporous silica gel. Appl Biochem Biotech 168:2043–2056

    Article  Google Scholar 

  57. Chakraborty S, Biswas S, Dey R, Mitra MK, Das S (2011) Sustained release of silica gel entrapped methanol extract of Andrographis paniculata and its retention of antimicrobial property. Int J Nov Drug Deliv Technol 1:181–184

    Google Scholar 

  58. Bottcher H, Jagota C, Trepte J, Kallies KH, Haufe H (1999) Sol–gel composite films with controlled release of biocides. J Control Release 60:57–65

    Article  Google Scholar 

  59. Teoli D, Parisi L, Realdon N, Guglielmi M, Rosato A, Morpurgo M (2006) Wet sol–gel derived silica for controlled release of proteins. J Control Release 116:295–303

    Article  Google Scholar 

  60. Wu Z, Joo H, Ahn IS, Kim JH, Kim CK, Lee K (2004) Design of doped hybrid xerogels for a controlled release of brilliant blue FCF. J Non-Cryst Solids 342:46–53

    Article  Google Scholar 

  61. Verraedt E, Pendela M, Adams E, Hoogmartens J, Martens JA (2010) Controlled release of chlorhexidine from amorphous microporous silica. J Control Release 142:47–52

    Article  Google Scholar 

  62. Veith SR, Hughes E, Pratsinis SE (2004) Restricted diffusion and release of aroma molecules from sol–gel-made porous silica particles. J Control Release 99:315–327

    Article  Google Scholar 

  63. Shoaib MH, Tazeen J, Merchant HA, Yousuf RI (2006) Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci 19:119–124

    Google Scholar 

  64. Ullah Shah S, Ullah Shah K, Rehman A, Khan GM (2011) Investigating the in vitro drug release kinetics from controlled release diclofenac potassium-ethocel matrix tablets and the influence of co-excipients on drug release patterns. Pak J Pharm Sci 24:183–192

    Google Scholar 

  65. Lindahl C, Xia W, Lausmaa J, Borchardt P, Engqvist H (2012) Strontium and silicon co-doped apatite coating: preparation and function as vehicles for ion delivery. J Biomater Nanobiotechnol 3:335–341

    Article  Google Scholar 

Download references

Acknowledgments

This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the project number POSDRU/159/1.5/S/132400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraru, C.V., Magyari, K., Tamasan, M. et al. Synthesis and characterisation of Gossypium hirsutum seeds extract nanoencapsulated in silica microparticles. J Sol-Gel Sci Technol 77, 57–68 (2016). https://doi.org/10.1007/s10971-015-3828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3828-8

Keywords

Navigation