Skip to main content
Log in

Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the antibacterial property of silver-incorporated mesoporous bioactive glass microspheres (Ag-MBGMs) was investigated. The samples belonging to the 80SiO2·(15 − x)CaO·5P2O5·xAg2O system where 0 ≤ x ≤ 5 mol% were successfully prepared for bone regeneration and drug carrier applications. The obtained samples were evaluated by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope, Fourier transform infrared spectroscopy, and N2 adsorption/desorption measurements. All Ag-MBGMs had spherical particles with particle size 6–10 µm. TEM images showed mesopore structure. The textural properties showed a decrease in surface area and pore volume with an increase in silver content. XRD patterns exhibited the presence of pseudowollastonite and hydroxyapatite phase for silver-incorporating MBGMs, which might increase its bioactivity and bone bonding ability. Finally, all Ag-MBMGs had an antibacterial effect against both Escherichia coli and Staphylococcus aureus. Therefore, Ag-MBGMs may provide more potential for use as injectable, anticancer and drug-loading biomaterials for bone tissue engineering applications.

Graphical Abstract

In this study, the mesoporous bioactive glass microspheres (MBGMs) belonging to the system 80SiO2·(15 − x)CaO·5P2O5·xAg2O (x = 1, 3, and 5) were successfully prepared by the sol–gel process with surfactant-assisted mesoporous template. Effects of silver addition in MBGMs system were investigated for the first time such as particle shape and size, textural analysis, phase composition, in vitro bioactivity, and antibacterial effect. All prepared MBGMs have uniform microspherical particle (2–5 µm) with hierarchically structure. The textural analysis revealed that all prepared MBGMs had high porosity and relatively high surface area. The incorporation of apatite, pseudowollastonite, and metallic silver crystals were found for adding silver content more than 1 mol%. All prepared MBGMs can induce the crystalline hydroxyl carbonate apatite layer on the surface after soaking in simulated body fluid solution for 7 days. All silver-containing MBGMs had a very good antibacterial effect against Staphylococcus aureus and Escherichia coli. In addition, silver-incorporated MBGMs exhibited anticancer property against HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110(3):522–530. doi:10.1016/j.jconrel.2005.11.002

    Article  Google Scholar 

  2. Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, Zreiqat H (2008) Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous Mesoporous Mater 112(1–3):494–503. doi:10.1016/j.micromeso.2007.10.029

    Article  Google Scholar 

  3. Hu Q, Chen X, Zhao N, Li Y (2013) Facile synthesis and in vitro bioactivity of monodispersed mesoporous bioactive glass sub-micron spheres. Mater Lett 106:452–455. doi:10.1016/j.matlet.2013.04.075

    Article  Google Scholar 

  4. Lei B, Chen X, Wang Y, Zhao N (2009) Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Mater Lett 63(20):1719–1721. doi:10.1016/j.matlet.2009.04.041

    Article  Google Scholar 

  5. Miao G, Chen X, Dong H, Fang L, Mao C, Li Y, Li Z, Hu Q (2013) Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery. Mater Sci Eng C 33(7):4236–4243. doi:10.1016/j.msec.2013.06.022

    Article  Google Scholar 

  6. Zhao S, Li Y, Li D (2010) Synthesis and in vitro bioactivity of CaO–SiO2–P2O5 mesoporous microspheres. Microporous Mesoporous Mater 135(1–3):67–73. doi:10.1016/j.micromeso.2010.06.012

    Article  Google Scholar 

  7. Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237(4822):1588–1595

    Article  Google Scholar 

  8. El-Kady AM, Ali AF, Rizk RA, Ahmed MM (2012) Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int 38(1):177–188. doi:10.1016/j.ceramint.2011.05.158

    Article  Google Scholar 

  9. Kamitakahara M, Ohtsuki C, Inada H, Tanihara M, Miyazaki T (2006) Effect of ZnO addition on bioactive CaO–SiO2–P2O5–CaF2 glass–ceramics containing apatite and wollastonite. Acta Biomaterialia 2(4):467–471. doi:10.1016/j.actbio.2006.03.001

    Article  Google Scholar 

  10. Palza H, Escobar B, Bejarano J, Bravo D, Diaz-Dosque M, Perez J (2013) Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Mater Sci Eng C 33(7):3795–3801. doi:10.1016/j.msec.2013.05.012

    Article  Google Scholar 

  11. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433. doi:10.1016/j.biomaterials.2012.09.066

    Article  Google Scholar 

  12. Diba M, Boccaccini AR (2014) 9—Silver-containing bioactive glasses for tissue engineering applications. In: Baltzer N, Copponnex T (eds) Precious metals for biomedical applications. Woodhead Publishing, Cambridge, p 177–211. doi:10.1533/9780857099051.2.177

  13. Vernè E, Nunzio SD, Bosetti M, Appendino P, Vitale Brovarone C, Maina G, Cannas M (2005) Surface characterization of silver-doped bioactive glass. Biomaterials 26(25):5111–5119. doi:10.1016/j.biomaterials.2005.01.038

    Article  Google Scholar 

  14. Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M (2012) The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett 208(3):197–213. doi:10.1016/j.toxlet.2011.11.006

    Article  Google Scholar 

  15. Prasad RY, McGee JK, Killius MG, Suarez DA, Blackman CF, DeMarini DM, Simmons SO (2013) Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol In Vitro 27(6):2013–2021. doi:10.1016/j.tiv.2013.07.005

    Article  Google Scholar 

  16. Thati B, Noble A, Creaven BS, Walsh M, McCann M, Devereux M, Kavanagh K, Egan DA (2009) Role of cell cycle events and apoptosis in mediating the anti-cancer activity of a silver(I) complex of 4-hydroxy-3-nitro-coumarin-bis(phenanthroline) in human malignant cancer cells. Eur J Pharmacol 602(2–3):203–214

    Article  Google Scholar 

  17. Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N (2003) Preparation of antibacterial silver-doped silica glass microspheres. J Biomed Mater Res A. 66(2):266–274

    Article  Google Scholar 

  18. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  19. Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceram Int 36(6):1911–1916. doi:10.1016/j.ceramint.2010.03.017

    Article  Google Scholar 

  20. Sautier JM, Kokubo T, Ohtsuki T, Nefussi JR, Boulekbache H, Oboeuf M, Loty S, Loty C, Forest N (1994) Bioactive glass-ceramic containing crystalline apatite and wollastonite initiates biomineralization in bone cell cultures. Calcif Tissue Int 55(6):458–466. doi:10.1007/bf00298560

    Article  Google Scholar 

  21. Simon V, Albon C, Simon S (2008) Silver release from hydroxyapatite self-assembling calcium–phosphate glasses. J Non-Cryst Solids 354(15–16):1751–1755. doi:10.1016/j.jnoncrysol.2007.08.063

    Article  Google Scholar 

  22. Zhu M, Zhang J, Tao C, He X, Zhu Y (2014) Design of mesoporous bioactive glass/hydroxyapatite composites for controllable co-delivery of chemotherapeutic drugs and proteins. Mater Lett 115:194–197. doi:10.1016/j.matlet.2013.10.058

    Article  Google Scholar 

  23. Zhu Y, Kaskel S (2009) Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous Mesoporous Mater 118(1–3):176–182. doi:10.1016/j.micromeso.2008.08.046

    Article  Google Scholar 

  24. Vulpoi A, Baia L, Simon S, Simon V (2012) Silver effect on the structure of SiO2–CaO–P2O5 ternary system. Mater Sci Eng C 32(2):178–183. doi:10.1016/j.msec.2011.10.015

    Article  Google Scholar 

  25. Saravanapavan P, Patel MH, Hench LL (2003) Effect of composition and texture on controlled rate of release of an antibacterial agent from bioactive gel-glasses. Bioceramics 15(240–242):233–236. doi:10.4028/www.scientific.net/KEM.240-242.233

    Google Scholar 

  26. Gargiulo N, Cusano AM, Causa F, Caputo D, Netti PA (2013) Silver-containing mesoporous bioactive glass with improved antibacterial properties. J Mater Sci Mater Med 24(9):2129–2135

    Article  Google Scholar 

  27. Nezafati N, Moztarzadeh F, Hesaraki S (2012) Surface reactivity and in vitro biological evaluation of sol gel derived silver/calcium silicophosphate bioactive glass. Biotechnol Bioprocess Eng 17(4):746–754. doi:10.1007/s12257-012-0046-x

    Article  Google Scholar 

  28. Anjaneyulu U, Sasikumar S (2014) Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bull Mater Sci 37(2):207–212. doi:10.1007/s12034-014-0646-5

    Article  Google Scholar 

  29. Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46(6):1940–1945. doi:10.1128/aac.46.6.1940-1945.2002

    Article  Google Scholar 

  30. Valappil SP, Pickup DM, Carroll DL, Hope CK, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2007) Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob Agents Chemother 51(12):4453–4461

    Article  Google Scholar 

  31. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  Google Scholar 

  32. Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res 51(3):484–490. doi:10.1002/1097-4636(20000905)51:3<484:aid-jbm24>3.0.co;2-4

    Article  Google Scholar 

  33. Zhang S, Du C, Wang Z, Han X, Zhang K, Liu L (2013) Reduced cytotoxicity of silver ions to mammalian cells at high concentration due to the formation of silver chloride. Toxicol In Vitro 27(2):739–744. doi:10.1016/j.tiv.2012.12.003

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financed by The Royal Golden Jubilee Ph.D. program supported from Thailand Research Fund and Suranaree University of Technology. The authors would like to thank Dr. Ratchadaporn Oonsivilai and Miss Thasaneewan Srisan for their helps in MTT assay test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirirat Tubsungnoen Rattanachan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phetnin, R., Rattanachan, S.T. Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. J Sol-Gel Sci Technol 75, 279–290 (2015). https://doi.org/10.1007/s10971-015-3697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3697-1

Keywords

Navigation