Skip to main content
Log in

Microwave-assisted sol–gel synthesis of BiFeO3 nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Among the various multiferroic materials bismuth iron oxide is a promising candidate due to its relatively high antiferromagnetic Neel temperature and high ferroelectric Curie temperature as compared to all other multiferroic materials. However, synthesis of phase pure BiFeO3 is extremely difficult due to the volatile nature of Bi2O3 that leads to bismuth-deficient phases and if excess of bismuth is employed it gives rise to bismuth rich phases. Moreover, the synthesis of phase pure BiFeO3 requires high temperature annealing in the range of 400–700 °C. In order to overcome these difficulties, we here report microwave-assisted sol–gel synthesis of phase pure BiFeO3 nanoparticles. In the present study, power of microwaves is varied as 136, 264, 440, 616 and 800 W. XRD results show formation of phase pure BiFeO3 with rhombohedrally distorted perovskite structure at 264, 440 and 800 W. Crystallite size decreases to 21 nm with the increase in microwave power to 800 W. The presence of absorption bands at 470 and 580 cm−1 in FTIR spectra, corresponding to FeO6 and BiO6, indicate the formation of pure BiFeO3 phase. BiFeO3 nanoparticles show high dielectric constant (135 at 1 kHz) at 264 W. SEM images show the formation of spherical and cubic nanoparticles in the range of 100–150 nm with microwave powers of 136–440 W. Increasing the microwave power to 616 W gives spherical nanoparticles with sizes of 60 nm while further increasing the microwave power to 800 W results in nanoneedles with diameter of 30 nm. Ferromagnetic behavior, instead of antiferromagnetic nature of BiFeO3, is observed for the nanoparticles prepared at microwave power of 616 and 800 W. This demonstrates that microwave-assisted sol–gel technique gives phase pure BiFeO3 nanoparticles using low power and less time, along with excellent ferromagnetic and dielectric properties as compared to conventional heating method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luo L, Luo W, Yuan G, Wei W, Yuan X, Zhang H, Shen K, Xu M, Xu Q (2013) J Supercond Nov Magn 26:3309–3313

    Article  Google Scholar 

  2. Ke H, Wang W, Wang Y, Xu J, Jia D, Lu Z, Zhou Y (2011) J Alloys Compd 509:2192–2197

    Article  Google Scholar 

  3. Tripathy SN, Mishra BG, Shirolkar MM, Sen S, Das SR, Janes DB, Pradhan DK (2013) Mater Chem Phys 141:423–431

    Article  Google Scholar 

  4. Sakar M, Balakumar S, Saravanan P, Jaisankar SN (2013) Mater Res Bull 48:2878–2885

    Article  Google Scholar 

  5. Das R, Mandal K (2012) J Magn Magn Mater 324:1913–1918

    Article  Google Scholar 

  6. Rashad MM (2012) J Mater Sci Mater Electron 23:882–888

    Article  Google Scholar 

  7. Lin Z, Cai W, Jiang W, Fu C, Lic C, Song Y (2013) Ceram Int 39:8729–8736

    Article  Google Scholar 

  8. Zhao J, Zhang X, Liu S, Zhang W, Liu Z (2013) J Alloys Compd 557:120–123

    Article  Google Scholar 

  9. Wang L, Xu JB, Gao B, Chang AM, Chen J, Bian L, Song CY (2013) Mater Res Bull 48:383–388

    Article  Google Scholar 

  10. Oliveira LAS, Pirota KR (2013) Mater Res Bull 48:1593–1597

    Article  Google Scholar 

  11. Challa SSR, Magnetic Nanomaterials, Wiley-VCH, Weinheim; Yang J, Li X, Zhou J, Tang Y, Zhanga Y, Li Y (2011) J Alloys Compd 509:9271–9277

  12. Wang Z, Zhu J, Xu W, Sui J, Peng H, Tang X (2012) Mater Chem Phys 135:330–333

    Article  Google Scholar 

  13. Ponzoni C, Rosa R, Cannio M, Buscaglia V, Finocchio E, Nanni P, Leonelli C (2013) J Alloys Compd 558:150–159

    Article  Google Scholar 

  14. Cai W, Fu C, Hu W, Chen G, Deng X (2013) J Alloys Compd 554:64–71

    Article  Google Scholar 

  15. Zhu JJ, Zhu JM, Liao XH, Fang JL, Zhou MG, Chen HY (2002) Mater Lett 53:12–19

    Article  Google Scholar 

  16. Lidstrom P, Tierney J, Wathey B, Westman B (2001) Tetrahedron 57:9225–9283

    Article  Google Scholar 

  17. Phani AR, Passacantando M, Santucci S (2007) J Phys Chem Solid 68:317–323

    Article  Google Scholar 

  18. Phani AR, Santucci S (2006) J Non-Cryst Solid 352:4093–4100

    Article  Google Scholar 

  19. Gonj JP, Castrejon MEV, Fuentes L, Moran E (2009) Mater Res Bull 44:1734–1737

    Article  Google Scholar 

  20. Akbar A, Riaz S, Atiq S, Naseem S (2014) IEEE Trans Magn. doi:10.1109/TMAG.2014.2309720

    Google Scholar 

  21. Akbar A, Riaz S, Atiq S, Naseem S (2014) IEEE Trans Magn. doi:10.1109/TMAG.2014.2310691

    Google Scholar 

  22. Riaz S, Shah SMH, Akbar A, Kayani ZN, Naseem S (2014) IEEE Trans Magn. doi:10.1109/TMAG.2014.2313002

    Google Scholar 

  23. Gonjal P, Castrejon MEV, Fuentes L, Moran E (2009) Mater Res Bull 44:1734–1737

    Article  Google Scholar 

  24. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company, USA

    Google Scholar 

  25. Riaz S, Naseem S (2007) J Mater Sci Technol 23:499–503

    Google Scholar 

  26. Farhadi S, Rashidi N (2010) J Alloys Compd 503:439–444

    Article  Google Scholar 

  27. Bhushan B, Basumallick A, Bandopadhyay SK, Vasanthacharya NY, Das D (2009) J Phys D Appl Phys 42:065004

    Article  Google Scholar 

  28. Ke H, Wang W, Wang Y, Xu J, Jia D, Lu Z, Zhou Y (2011) J Alloys Compd 509:2192–2197

    Article  Google Scholar 

  29. Chen Z, Hu J, Lu Z, He X (2011) Ceram Int 37:2359–2364

    Article  Google Scholar 

  30. Hu Y, Fei L, Zhang Y, Yuan J, Wang Y, Gu H (2011) J Nanomater 50:797639–797645

    Google Scholar 

  31. Biasotto G, Simo˜es AZ, Foschini CR, Zaghete MA (2011) Simo˜es AZ, Foschini CR, Zaghete MA, Varela JA, Longo. Mater Res Bull 46:2543–2547 2545

    Article  Google Scholar 

  32. Verma KC, Ram M, Singh J, Kotnala RK (2011) J Alloys Compd 509:4967–4971

    Article  Google Scholar 

  33. Nasir S, Asghar G, Malik MA, Rehman MA (2011) J Sol–Gel Sci Technol 59:111–116

    Article  Google Scholar 

  34. Yang C, Jiang JS, Qian FZ, Jiang DM, Wang CM, Zhang WG (2010) J Alloys Compd 507:29–32

    Article  Google Scholar 

  35. Pandit P, Satapathy S, Gupta PK (2011) Phys B 406:2669–2677

    Article  Google Scholar 

  36. Akbar A, Riaz S, Nairan A, Naseem S (2014) IEEE Trans Magn. doi:10.1109/TMAG.2014.2311826

    Google Scholar 

  37. Riaz S, Naseem S, Xu YB (2011) J Sol-gel Sci Techn 59:584–590

  38. Varshney D, Sharma P, Satapathy S, Gupta PK (2014) J Alloys Compd 584:232–239

    Article  Google Scholar 

  39. Li Y, Yang HJ, Yang WG, Hou ZL, Li JB, Jin HB, Yuan J, Cao MS (2011) Mater Lett 111:130–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, F., Riaz, S. & Naseem, S. Microwave-assisted sol–gel synthesis of BiFeO3 nanoparticles. J Sol-Gel Sci Technol 74, 310–319 (2015). https://doi.org/10.1007/s10971-014-3477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3477-3

Keywords

Navigation