Skip to main content
Log in

Abstract

PGAA was performed on three 239Pu foils: (1) 1810 kBq electrodeposited on nickel, (2) 17.8 kBq sample, and (3) a 13.9 kBq sample (2 and 3 electrodeposited on SS304). The activities of samples (2) and (3) were determined based on the 2015 and 6102 keV prompt gamma ray net counts from each sample relative to sample (1) counts. Results showed good agreement between measured and certified activities [within 4% for sample (2) and 11% for sample (3)]. Using PGAA, it may be possible to enhance current safeguards techniques to enable 239Pu detection through attenuating nuclear material storage containers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nguyen C (2006) Verification of the 239Pu content, isotopic composition and age of plutonium in Pu–Be neutron sources by gamma-spectrometry. Nucl Instrum Meth Phys Res B 251:227–236

    Article  CAS  Google Scholar 

  2. Helmer RG, Reich CW, Gehrke RJ, Baker JD (1982) Emission probabilities and energies of γ-ray transitions from the 239Pu decay. Int J App Radiat Isotop 33:23–26

    Article  CAS  Google Scholar 

  3. Egozi C, Charlton W, Landsberger S (2022) Characterization of 239Pu with PGAA for materials accountability. In: IAEA symposium on international safeguards: reflecting on the past and anticipating the future, Vienna, https://www.iaea.org/events/sg-2022

  4. Lindstrom RM (1993) Prompt-gamma activation analysis. J Res Natl Inst Stand Technol 98:127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. IAEA, 2014. Prompt gamma-ray neutron activation analysis, https://www-nds.iaea.org/pgaa/pgaa7/index.html.

  6. Gladney ES, Curtis DB, Jurney ET (1978) Multielement analysis of major and minor elements by thermal neutron induced capture gamma-ray spectrometry. J Radioanal Chem 46:299–308. https://doi.org/10.1007/BF02519896

    Article  CAS  Google Scholar 

  7. Robinson JA, Hartman MR, Reese SR (2010) Design, construction and characterization of a prompt gamma activation analysis facility at the Oregon state university TRIGA® reactor. J Radioanal Nucl Chem 283:359–369. https://doi.org/10.1007/s10967-009-0358-2

    Article  CAS  Google Scholar 

  8. Zhao L, Robinson L (2009) A comparison between cold and thermal neutron prompt gamma activation analysis in the determination of carbon, nitrogen, and phosphorus in cattail. J Radioanal Nucl Chem 282:151–156. https://doi.org/10.1007/s10967-009-0309-y

    Article  CAS  Google Scholar 

  9. Lindstrom RM, Révay Z (2017) Prompt gamma neutron activation analysis (PGAA): recent developments and applications. J Radioanal Nucl Chem 314:843–858. https://doi.org/10.1007/s10967-017-5483-8

    Article  CAS  Google Scholar 

  10. Newton Nathaniel T, Sudarshan K, Goswami A et al (2009) Non-destructive assay technique for the determination of 238U/232Th ratio in the mixed oxides of uranium and thorium using prompt gamma-ray neutron activation. J Radioanal Nucl Chem 279:481–485. https://doi.org/10.1007/s10967-007-7314-4.(OLD6)

    Article  CAS  Google Scholar 

  11. Paul RL, Lindstrom RM (2000) Prompt gamma-ray activation analysis: fundamentals and applications. J Radioanal Nucl Chem 243:181–189. https://doi.org/10.1023/A:1006796003933.(OLD7)

    Article  CAS  Google Scholar 

  12. Oliveira C, Salgado J (1993) Elemental composition of coal by using prompt gamma-neutron activation analysis. J Radioanal Nucl Chem 167:153–160. https://doi.org/10.1007/BF02035475

    Article  Google Scholar 

  13. Manescu A et al (2008) J Phys: Condens Matter 20:104250

    Google Scholar 

  14. Kasztovszky Z, Panczyk E, Fedorowicz W et al (2005) Comparative archaeometrical study of Roman silver coins by prompt gamma activation analysis and SEM-EDX. J Radioanal Nucl Chem 265:193–199. https://doi.org/10.1007/s10967-005-0809-3

    Article  CAS  Google Scholar 

  15. Zeisler R, Lamaze GP, Chen-Mayer HH (2001) Coincidence and anti-coincidence measurements in prompt gamma neutron activation analysis with pulsed cold neutron beams. J Radioanal Nucl Chem 248:35–38. https://doi.org/10.1023/A:1010609604827

    Article  CAS  Google Scholar 

  16. Osawa T (2015) Development of an automatic prompt gamma-ray activation analysis system. J Radioanal Nucl Chem 303:1141–1146. https://doi.org/10.1007/s10967-014-3436-z

    Article  CAS  Google Scholar 

  17. Prompt Gamma-Ray Activation Analysis (PGAA). NIST, 15 Nov 2019, www.nist.gov/laboratories/tools-instruments/prompt-gamma-ray-activation-analysis-pgaa.

  18. Révay Z, Firestone RB, Belgya T, Molnár GL (2004) Prompt gamma-ray spectrum catalog. In: Molnár GL (ed) Handbook of prompt gamma activation analysis. Springer, Boston, MA

    Google Scholar 

  19. Révay Z (2008) Prompt gamma activation analysis of samples in thick containers. J Radioanal Nucl Chem 276:825

    Article  Google Scholar 

  20. Révay Zs, Harrison RK, Alvarez E, Biegalski SR, Landsberger S (2007) Construction and characterization of the redesigned PGAA facility at the university of 241 Texas at Austin. Nucl Instrum Meth Phys Res A 577(3):611–618. https://doi.org/10.1016/j.nima.2007.04.119

    Article  CAS  Google Scholar 

  21. Charlton WS, Lohmeier D, Andrews M, Wermer JR, Cooley JC (2022) Hydrogen measurements in U alloys using prompt gamma-ray activation analysis. Trans Am Nucl Soc 126:245–247

    Google Scholar 

  22. Sonzogni AA (2004) Nucl Data Sheets 103:1

    Article  CAS  Google Scholar 

  23. Turhan S (2007) Efficiency calibration of an HPGe detector in the 0.1–2.5 MeV energy range 244 for Am-Be neutron source-based PGAA applications. J Radioanal Nucl Chem 273:443–245. https://doi.org/10.1007/s10967-007-6877-9

    Article  CAS  Google Scholar 

  24. Currie LA (1968) Limits for qualitative detection and quantitative determination. Appl radiochem Anal Chem 40:586–593. https://doi.org/10.1021/ac60259a007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Los Alamos National Laboratory (LANL) for providing the funding for this work. This paper is approved for release by LANL LA-UR-23-28777.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Egozi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egozi, C., Charlton, W.S. & Landsberger, S. Prompt gamma activation analysis for 239Pu characterization. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09498-3

Keywords

Navigation