Skip to main content
Log in

Elucidating the binding configuration of uranium at the biotite-water interface

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Understanding the binding configuration of uranium on biotite is crucial for elucidating the environmental behavior of U(VI) and addressing emergency scenarios in disposal repositories. This investigation demonstrated that U(VI) adsorption on biotite was significantly affected by pH, while a lesser impact from ionic strength. Moreover, the presence of phosphate and humic acid (HA) exerted a substantial enhancing influence on U(VI) adsorption (adsorption rate increased by over 20%). X-ray photoelectron spectroscopy (XPS) analysis revealed that elevated Fe(II) contents within biotite structures facilitated the reduction of partial U(VI) to form U(V/IV)/U(IV), i.e., mineralization products, under both aerobic and anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen P, Ma Y, Kang M et al (2020) The redox behavior of uranium on Beishan granite: Effect of Fe2+ and Fe3+ content. J Environ Radioactiv 217:106208. https://doi.org/10.1016/j.jenvrad.2020.106208

    Article  CAS  Google Scholar 

  2. Fukushi K, Hasegawa Y, Maeda K et al (2013) Sorption of Eu(III) on granite: EPMA, LA–ICP–MS, batch and modeling studies. Environ Sci Technol 47:12811–12818. https://doi.org/10.1021/es402676n

    Article  CAS  PubMed  Google Scholar 

  3. Yu C, Drake H, Dideriksen K et al (2020) A Combined X-ray absorption and Mössbauer spectroscopy study on Fe valence and secondary mineralogy in granitoid fracture networks: implications for geological disposal of spent nuclear fuels. Environ Sci Technol 54:2832–2842. https://doi.org/10.1021/acs.est.9b07064

    Article  CAS  PubMed  Google Scholar 

  4. Zhou W, Xian D, Su X et al (2020) Macroscopic and spectroscopic characterization of U(VI) sorption on biotite. Chemosphere 255:126942. https://doi.org/10.1016/j.chemosphere.2020.126942

    Article  CAS  PubMed  Google Scholar 

  5. Pan D, Zhao X, Wang P et al (2022) Insights into sorption speciation of uranium on phlogopite: evidence from TRLFS and DFT calculation. J Hazard Mater 427:128164. https://doi.org/10.1016/j.jhazmat.2021.128164

    Article  CAS  PubMed  Google Scholar 

  6. Yang X, Ge X, He J et al (2018) Effects of mineral compositions on matrix diffusion and sorption of 75Se(IV) in granite. Environ Sci Technol 52:1320–1329. https://doi.org/10.1021/acs.est.7b05795

    Article  CAS  PubMed  Google Scholar 

  7. Chakraborty S, Bardelli F, Mullet M et al (2011) Spectroscopic studies of arsenic retention onto biotite. Chem Geol 281:83–92. https://doi.org/10.1016/j.chemgeo.2010.11.030

    Article  CAS  Google Scholar 

  8. Bray AW, Benning LG, Bonneville S, Oelkers EH (2014) Biotite surface chemistry as a function of aqueous fluid composition. Geochim Cosmochim Acta 128:58–70. https://doi.org/10.1016/j.gca.2013.12.002

    Article  CAS  Google Scholar 

  9. Li X, Zhang C, Almeev RR et al (2019) Electron probe microanalysis of Fe2+/ΣFe ratios in calcic and sodic-calcic amphibole and biotite using the flank method. Chem Geol 509:152–162. https://doi.org/10.1016/j.chemgeo.2019.01.009

    Article  CAS  Google Scholar 

  10. Luo D, Geng R, Zhang Y et al (2022) Interaction behaviors of Cr(VI) at biotite-water interface in the presence of HA: batch XRD and XPS investigations. Chemosphere 293:133585. https://doi.org/10.1016/j.chemosphere.2022.133585

    Article  CAS  PubMed  Google Scholar 

  11. Bonneville S, Bray AW, Benning LG (2016) Structural Fe(II) Oxidation in biotite by an ectomycorrhizal fungi drives mechanical forcing. Environ Sci Technol 50:5589–5596. https://doi.org/10.1021/acs.est.5b06178

    Article  CAS  PubMed  Google Scholar 

  12. Rihs S, Gontier A, Voinot A et al (2020) Field biotite weathering rate determination using U-series disequilibria. Geochim Cosmochim Acta 276:404–420. https://doi.org/10.1016/j.gca.2020.01.023

    Article  CAS  Google Scholar 

  13. Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem 310:711–724. https://doi.org/10.1007/s10967-016-4828-z

    Article  CAS  Google Scholar 

  14. Şenol ZM, Keskin ZS, Şimşek S (2023) Synthesis and characterization of a new hybrid polymer composite (pollene@polyacrylamide) and its applicability in uranyl ions adsorption. J Radioanal Nucl Chem 332:2239–2248. https://doi.org/10.1007/s10967-023-08820-9

    Article  CAS  Google Scholar 

  15. Şimşek S, Derin Y, Kaya S et al (2022) High-performance material for the effective removal of uranyl ion from solution: computationally supported experimental studies. Langmuir 38:10098–10113. https://doi.org/10.1021/acs.langmuir.2c00978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arnold T, Utsunomiya S, Geipel G et al (2006) Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environ Sci Technol 40:4646–4652. https://doi.org/10.1021/es052507l

    Article  CAS  PubMed  Google Scholar 

  17. Jiménez-Reyes M, Solache-Ríos M (2018) Adsorption of U(IV) by several geomaterials: kinetic, adsorbent dosage and thermodynamic. J Radioanal Nucl Chem 317:269–276. https://doi.org/10.1007/s10967-018-5847-8

    Article  CAS  Google Scholar 

  18. Singer DM, Maher K, Brown GE (2009) Uranyl–chlorite sorption / desorption: evaluation of different U(VI) sequestration processes. Geochim Cosmochim Acta 73:5989–6007. https://doi.org/10.1016/j.gca.2009.07.002

    Article  CAS  Google Scholar 

  19. Bayramoglu G, Arica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 147:146–159. https://doi.org/10.1016/j.cherd.2019.04.039

    Article  CAS  Google Scholar 

  20. Wang Y, Wang J, Li P et al (2021) The adsorption of U(VI) on magnetite, ferrihydrite and goethite. Environ Technol Innov 23:101615. https://doi.org/10.1016/j.eti.2021.101615

    Article  CAS  Google Scholar 

  21. Celikbıcak O, Bayramoglu G, Acıkgoz-Erkaya I, Arica MY (2021) Aggrandizement of uranium (VI) removal performance of Lentinus concinnus biomass by attachment of 2,5-diaminobenzenesulfonic acid ligand. J Radioanal Nucl Chem 328:1085–1098. https://doi.org/10.1007/s10967-021-07708-w

    Article  CAS  Google Scholar 

  22. Lee SY, Baik MH, Lee YB (2009) Adsorption of uranyl ions and microscale distribution on Fe-bearing mica. Appl Clay Sci 44:259–264. https://doi.org/10.1016/j.clay.2009.03.002

    Article  CAS  Google Scholar 

  23. Lee SY, Baik MH, Lee YJ, Lee YB (2009) Adsorption of U(VI) ions on biotite from aqueous solutions. Appl Clay Sci 46:255–259. https://doi.org/10.1016/j.clay.2009.08.013

    Article  CAS  Google Scholar 

  24. Brookshaw DR, Pattrick RAD, Bots P et al (2015) Redox interactions of Tc(VII), U(VI), and Np(V) with microbially reduced biotite and chlorite. Environ Sci Technol 49:13139–13148. https://doi.org/10.1021/acs.est.5b03463

    Article  CAS  PubMed  Google Scholar 

  25. Ilton ES, Haiduc A, Cahill CL, Felmy AR (2005) Mica surfaces stabilize pentavalent uranium. Inorg Chem 44:2986–2988. https://doi.org/10.1021/ic0487272

    Article  CAS  PubMed  Google Scholar 

  26. Ilton ES, Heald SM, Smith SC et al (2006) Reduction of uranyl in the interlayer region of low iron micas under anoxic and aerobic conditions. Environ Sci Technol 40:5003–5009. https://doi.org/10.1021/es0522478

    Article  CAS  PubMed  Google Scholar 

  27. Ilton ES, Haiduc A, Moses CO et al (2004) Heterogeneous reduction of uranyl by micas: Crystal chemical and solution controls. Geochim Cosmochim Acta 68:2417–2435. https://doi.org/10.1016/j.gca.2003.08.010

    Article  CAS  Google Scholar 

  28. Boekhout F, Gérard M, Kanzari A et al (2015) Uranium migration and retention during weathering of a granitic waste rock pile. Appl Geochem 58:123–135. https://doi.org/10.1016/j.apgeochem.2015.02.012

    Article  CAS  Google Scholar 

  29. Yin X, Wang X, Wu H et al (2017) Effects of NH4+, K+, Mg2+, and Ca2+ on the cesium adsorption/desorption in binding sites of vermiculitized biotite. Environ Sci Technol 51:13886–13894. https://doi.org/10.1021/acs.est.7b04922

    Article  CAS  PubMed  Google Scholar 

  30. Fan QH, Tanaka M, Tanaka K et al (2014) An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim Cosmochim Acta 135:49–65. https://doi.org/10.1016/j.gca.2014.02.049

    Article  CAS  Google Scholar 

  31. Geng R, Wang W, Din Z et al (2020) Exploring sorption behaviors of Se(IV) and Se(VI) on Beishan granite: batch, ATR-FTIR, and XPS investigations. J Mol Liq 309:1129. https://doi.org/10.1016/j.molliq.2020.113029

    Article  CAS  Google Scholar 

  32. Tran HN (2022) Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient KD (qe/Ce) or freundlich constant (KF): considerations from the derivation of dimensionless thermodynamic equilibrium constant and suggestions. Adsorpt Sci Technol 2022:1–23. https://doi.org/10.1155/2022/5553212

    Article  CAS  Google Scholar 

  33. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  34. Gao Y, Shao Z, Xiao Z (2015) U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J Radioanal Nucl Chem 303:867–876. https://doi.org/10.1007/s10967-014-3385-6

    Article  CAS  Google Scholar 

  35. Zhao X, Qiang S, Wu H et al (2017) Exploring the sorption mechanism of Ni(II) on illite: Batch sorption, modelling. EXAFS Extract Investig Sci Rep 7:8495. https://doi.org/10.1038/s41598-017-09188-z

    Article  CAS  Google Scholar 

  36. Wu H, Chen J, Su Z et al (2021) Insight into the adsorption of europium(III) on muscovite and phlogopite: effects of pH, electrolytes, humic substances and mica structures. Chemosphere 282:131087. https://doi.org/10.1016/j.chemosphere.2021.131087

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Wu W, Pan D, Wu H (2022) Study on the behaviors and mechanism of Ni(II) adsorption at the hydroxyapatite-water interface: Effect of particle size. Adsorpt Sci Technol 2022:1–9. https://doi.org/10.1155/2022/3838766

    Article  CAS  Google Scholar 

  38. Wu H, Li P, Pan D et al (2016) Interactions between silicon oxide nanoparticles (SONPs) and U(VI) contaminations: effects of pH, temperature and natural organic matters. PLoS ONE 11:e0149632. https://doi.org/10.1371/journal.pone.0149632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Şenol ZM, Messaoudi NE, Fernine Y, Keskin ZS (2023) Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-03781-1

    Article  Google Scholar 

  40. Křepelová A, Brendler V, Sachs S et al (2007) U(VI)-kaolinite surface complexation in absence and presence of humic acid studied by TRLFS. Environ Sci Technol 41:6142–6147. https://doi.org/10.1021/es070419q

    Article  CAS  PubMed  Google Scholar 

  41. Joseph C, Schmeide K, Sachs S et al (2011) Sorption of uranium(VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water. Chem Geol 284:240–250. https://doi.org/10.1016/j.chemgeo.2011.03.001

    Article  CAS  Google Scholar 

  42. Sverjensky DA, Sahai N (1996) Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water. Geochim Cosmochim Acta 60:3773–3797. https://doi.org/10.1016/0016-7037(96)00207-4

    Article  CAS  Google Scholar 

  43. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438. https://doi.org/10.1016/S0016-7037(00)00376-8

    Article  CAS  Google Scholar 

  44. Catalano JG, Brown GE (2005) Uranyl adsorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochim Cosmochim Acta 69:2995–3005. https://doi.org/10.1016/j.gca.2005.01.025

    Article  CAS  Google Scholar 

  45. Pan D, Fan Q, Li P et al (2011) Sorption of Th(IV) on Na-bentonite: Effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172:898–905. https://doi.org/10.1016/j.cej.2011.06.080

    Article  CAS  Google Scholar 

  46. Singh A, Ulrich K-U, Giammar DE (2010) Impact of phosphate on U(VI) immobilization in the presence of goethite. Geochim Cosmochim Acta 74:6324–6343. https://doi.org/10.1016/j.gca.2010.08.031

    Article  CAS  Google Scholar 

  47. Troyer LD, Maillot F, Wang Z et al (2016) Effect of phosphate on U(VI) sorption to montmorillonite: ternary complexation and precipitation barriers. Geochim Cosmochim Acta 175:86–99. https://doi.org/10.1016/j.gca.2015.11.029

    Article  CAS  Google Scholar 

  48. Geelhoed JS, Hiemstra T, Van Riemsdijk WH (1997) Phosphate and sulfate adsorption on goethite: single anion and competitive adsorption. Geochim Cosmochim Acta 61:2389–2396. https://doi.org/10.1016/S0016-7037(97)00096-3

    Article  CAS  Google Scholar 

  49. Chen C, Wang X, Jiang H, Hu W (2007) Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloid Surface A 302:121–125. https://doi.org/10.1016/j.colsurfa.2007.02.014

    Article  CAS  Google Scholar 

  50. Schmeide K, Sachs S, Bubner M et al (2003) Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy. Inorg Chim Acta 351:133–140. https://doi.org/10.1016/S0020-1693(03)00184-1

    Article  CAS  Google Scholar 

  51. Lesher EK, Honeyman BD, Ranville JF (2013) Detection and characterization of uranium–humic complexes during 1D transport studies. Geochim Cosmochim Acta 109:127–142. https://doi.org/10.1016/j.gca.2013.01.014

    Article  CAS  Google Scholar 

  52. Joseph C, Van Loon LR, Jakob A et al (2013) Diffusion of U(VI) in Opalinus Clay: Influence of temperature and humic acid. Geochim Cosmochim Acta 109:74–89. https://doi.org/10.1016/j.gca.2013.01.027

    Article  CAS  Google Scholar 

  53. Ma B, Fernandez-Martinez A, Kang M et al (2020) Influence of surface compositions on the peactivity of Pyrite toward aqueous U(VI). Environ Sci Technol 54:8104–8114. https://doi.org/10.1021/acs.est.0c01854

    Article  CAS  PubMed  Google Scholar 

  54. Descostes M, Schlegel ML, Eglizaud N et al (2010) Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim Cosmochim Acta 74:1551–1562. https://doi.org/10.1016/j.gca.2009.12.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Nos. 21906187 and 22206068], the China Postdoctoral Science Foundation (2021M691372), and the Fundamental Research Funds for the Central Universities (No. lzujbky-2021-kb06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanyu Wu or Zhiwei Niu.

Ethics declarations

Ethical approval

The authors whose names are listed immediately above certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript. This statement is approved by all the authors to indicate agreement that the above information is true and correct.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wu, H., Lu, M. et al. Elucidating the binding configuration of uranium at the biotite-water interface. J Radioanal Nucl Chem 332, 3845–3858 (2023). https://doi.org/10.1007/s10967-023-09058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09058-1

Keywords

Navigation