Skip to main content
Log in

Non-destructive method for determining the 63Ni activity in reactor steels and alloys

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new non-destructive method has been proposed to determine the radioactivity of long-lived nickel radioisotopes produced in nuclear reactor metallic structural materials. We offer to use an electron accelerator and photonuclear reactions to determine the activity of 63Ni in spent reactor steel and alloys by the 60Co activity. The relative activity measurements allow to ignore factors such as material heterogeneity, differences in sample density and chemical composition. Using a semiconductor spectrometer with an HPGe detector, the developed method has an uncertainty of 5–10% and a sensitivity of 0.5 Bq g–1. It makes it possible to simplify the identification and control of 63Ni in metallic structural materials of nuclear power units and various types of radioactive waste. The proposed method was tested on RBMK-1000 and WWER-1000 reactor samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nieves LA, Chen SY, Kohout EJ, Nabelssi B, Tilbrook RW, Wilson SE (1998) Analysis of disposition alternatives for radioactively contaminated scrap metal. J Franklin Inst 335(6):1089–1103. https://doi.org/10.1016/s0016-0032(97)00055-0

    Article  Google Scholar 

  2. Anigstein R, Thurber WC, Mauro JJ, Marschke SF, and Behling UH (2001) Potential recycling of scrap metal from nuclear facilities, Washington, DC

  3. O´Sullivan PJ (2009) The relevance of metal recycling for nuclear industry decommissioning programs. Proceedings of an International Conference on Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal, Tarragona, Spain, 23–27 February 2009. Vienna: IAEA.

  4. Nieves LA et al (1998) Analysis of disposition alternatives for radioactively contaminated scrap metal. J Franklin Inst 335(6):1089–1103. https://doi.org/10.1016/s0016-0032(97)00055-0

    Article  Google Scholar 

  5. Ramesh C, Murugesan N, Ganesan V, Bharasi NS, Pujar MG, Mudali UK (2017) Studies on dissolution behavior of the surface layer of sodium-exposed SS 316LN in decontaminating formulation using PEMHS. Nucl Technol 197(1):99–109. https://doi.org/10.13182/NT15-141

    Article  Google Scholar 

  6. Zhong L, Lei J, Deng J, Lei Z, Lei L, Xu X (2021) Existing and potential decontamination methods for radioactively contaminated metals-A Review. Progr Nucl Energy. 139:103854. https://doi.org/10.1016/j.pnucene.2021.103854

    Article  CAS  Google Scholar 

  7. Hrncir T, Necas V (2013) Recycling and reuse of very low level radioactive steel in motorway tunnel scenario. Nucl Eng Des 265:534–541. https://doi.org/10.1016/j.nucengdes.2013.06.029

    Article  CAS  Google Scholar 

  8. Hrncir T, Panik M, Ondra F, Necas V (2013) The impact of radioactive steel recycling on the public and professionals. J Hazard Mater 254–255(1):98–106. https://doi.org/10.1016/j.jhazmat.2013.03.038

    Article  CAS  PubMed  Google Scholar 

  9. Sanders MC, Sanders CE (2016) A world’s dilemma ‘upon which the sun never sets––the nuclear waste management strategy (part I): Western European Nation States and the United States of America. Progr Nucl Energy 90:69–97. https://doi.org/10.1016/j.pnucene.2016.02.012

    Article  CAS  Google Scholar 

  10. Slimak A, Necas V (2014) Decontamination of contaminated scrap metal by melting arisen from the decommissioning of nuclear power plant shut down after an accident. Inform Autom Pomiary Gospod Ochr Śr 4(4):16–20. https://doi.org/10.5604/20830157.1130170

    Article  Google Scholar 

  11. Evans JC et al (1984) Long-Lived Activation Products in Reactor Materials, Richland, WA 99352

  12. Zhemzhurov ML et al (2021) Calculation researches for the formation of high-level and long-life medium-level radioactive waste of activation origin for the WWER-1200 reactor of Belarusian NPP. Proc Nat Acad Sci Belarus, Phys Tech Ser 66(3):365–377. https://doi.org/10.29235/1561-8358-2021-66-3-365-377

    Article  Google Scholar 

  13. Cho D-K et al (2011) Radiological characteristics of decommissioning waste from a Candu reactor. Nucl Eng Technol 43(6):583–592. https://doi.org/10.5516/NET.2011.43.6.583

    Article  CAS  Google Scholar 

  14. Kaplan A et al (2013) Photo-neutron cross section calculations of several structural fusion materials. J Fusion Energy 32(3):344–349. https://doi.org/10.1007/s10894-012-9575-8

    Article  CAS  Google Scholar 

  15. Özdoğan H, Şekerci M, Kaplan A (2019) Investigation of gamma strength functions and level density models effects on photon induced reaction cross-section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu. Appl Radiat Isot 143:6–10. https://doi.org/10.1016/j.apradiso.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  16. IAEA (2005) Design of the reactor core for nuclear power plants. Safety Guide. Safety Standards Series No. NS-G-1.12, Vienna

  17. Lindgren M, Pettersson M, and Wiborgh M (2007) Correlation factors for C-14, Cl-36, Ni-59, Ni-63, Mo-93, Tc-99, I-129 and Cs-135 in operational waste for SFR 1, Stockholm

  18. Tarasikov VP, Solovyov VA (2020) Influence of neutron irradiation on the physical and mechanical properties of steels and alloys of domestic nuclear reactors. Fizmatlit, Moscow

    Google Scholar 

  19. Belyaev LA, Vorobyov AV, Gavrilov PM, Gvozdyakov DV, Gubin VE (2010) Fuel and materials for nuclear engineering. Tomsk, TPU Publishing House, Textbook

    Google Scholar 

  20. IAEA (2009) Determination and use of scaling factors for waste characterization in nuclear power plants. IAEA Nuclear Energy Series No. NW-T-1.18, Vienna, International Atomic Energy Agency

  21. Sousa A, Jnior ESC, Temba GF, Monteiro RPG (2012) Radiochemical separation of nickel for 59Ni and 63Ni activity determination in nuclear waste samples. In Nuclear Power Plants. https://doi.org/10.5772/36073

    Article  Google Scholar 

  22. Kaye JH, Strebin RS, Nevissi AE (1994) Measurement of 63Ni in highly radioactive Hanford waste by liquid scintillation counting. J Radioanal Nucl Chem Art 180(2):197–200. https://doi.org/10.1007/BF02035906

    Article  CAS  Google Scholar 

  23. Hou X, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chem Acta 535(1–2):297–307. https://doi.org/10.1016/j.aca.2004.12.022

    Article  CAS  Google Scholar 

  24. Taddei MHT et al (2013) Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor. Appl Radiat Isot 77:50–55. https://doi.org/10.1016/j.apradiso.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  25. Lee CH, Suh MY, Jee KY, Kim WH (2007) Sequential separation of 99Tc, 94Nb, 55Fe, 90Sr and 59/63Ni from radioactive wastes. J Radioanal Nucl Chem 272(1):187–194. https://doi.org/10.1007/s10967-006-6835-y

    Article  CAS  Google Scholar 

  26. ISO 21238 (2007) Nuclear energy, Nuclear fuel technology, Scaling factor method to determine the radioactivity of low- and intermediate-level radioactive waste packages generated at nuclear power plants

  27. Bondar’kov MD, et al (2009) Radioactivity in technological NPP waste. Bull Rus Acad Sci: Phys 73(2):266–269. https://doi.org/10.3103/S1062873809020312

    Article  Google Scholar 

  28. Zheltonozhskaya MV, Zheltonozhsky VA, Myznikov DE, Nikitin AN, Strilchuk NV, Khomenkov VP (2021) Developing a way of processing complex X-ray and gamma spectra in the range of low energies. Bull Rus Acad Sci: Phys 85(10):1122–1127. https://doi.org/10.3103/S1062873821100270

    Article  CAS  Google Scholar 

  29. Agostinelli S et al (2003) GEANT4––A simulation toolkit. Nucl Instrum Methods Phys Res A 506(3):250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  30. Brajnik D et al (1976) Photonuclear reactions in 90Zr. Phys Rev C 13(5):1852–1863. https://doi.org/10.1103/PhysRevC.13.1852

    Article  CAS  Google Scholar 

  31. Zheltonozhsky VA, Savrasov AM (2019) Excitation of 179Hfm2 with (γ, n)-reaction. Nucl Instrum Methods Phys Res B 456:116–119. https://doi.org/10.1016/j.nimb.2019.06.029

    Article  CAS  Google Scholar 

  32. Firestone RB, Shirley VS, Baglin CM, Chu SYF (1997) Table of Isotopes, the, 8th edn. Springer, Hungary

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Russian Science Foundation under grant 22-29-01013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zheltonozhskaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheltonozhskaya, M.V., Iyusyuk, D.A., Chernyaev, A.P. et al. Non-destructive method for determining the 63Ni activity in reactor steels and alloys. J Radioanal Nucl Chem (2023). https://doi.org/10.1007/s10967-023-08936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-023-08936-y

Keywords

Navigation