Skip to main content
Log in

Separation of thorium from radioactive rare-earth waste residue using aminophosphonate-functionalized polymer resin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Rare earth (RE) elements is usually associated with radioactive thorium (Th) in nature. Here, we develop a new solid-phase extraction system for the separation of Th, and the effects of acidity, equilibrium time and cycle times on the adsorption performance of the resin were investigated. Kinetic studies show the extraction system has excellent chemical stability and cyclic stability. Further study the application of the resin in industry demonstrated that the separation efficiency is still up to 88%. Therefore, this work not only provides a new strategy for solid-phase extraction system, but also opens up a new way for Th separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu L, Yu JJ, Shi SK, Wang JY, Song HH, Zhang RK, Fu LS (2022) Preparation, luminescence and photofunctional performances of a hybrid layered gadolinium-europium hydroxide. J Rare Earths 40:1437–1444

    Article  CAS  Google Scholar 

  2. Zhang S, Saji SE, Yin ZY, Zhang HB, Du YP, Yan CH (2021) Rare-earth incorporated alloy catalysts: synthesis, properties, and applications. Adv Mater 33:2005988

    Article  CAS  Google Scholar 

  3. Zhu ZW, Pranolo Y, Cheng CY (2015) Separation of uranium and thorium from rare earths for rare earth production-A review. Miner Eng 77:185–196

    Article  CAS  Google Scholar 

  4. Qiu S, Li S, Dong YM, Su X, Wang YL, Shen YL, Sun XQ (2017) A high-performance impregnated resin for recovering thorium from radioactive rare earth waste residue. J Mol Liq 237:380–386

    Article  CAS  Google Scholar 

  5. Su J, Gao Y, Ni SN, Xu RG, Sun XQ (2021) A safer and cleaner process for recovering thorium and rare earth elements from radioactive waste residue. J Hazard Mater 406:124654

    Article  CAS  PubMed  Google Scholar 

  6. Zhou C, Zhu XX, Jiang RC, Hu JW, Zhou J, Dai YD (2017) Discussion on the technical specifications of radioactive cleaning solution control of low-level radioactive waste in Jiangsu province. Adm Tech Eviron Monit 29:60–64

    CAS  Google Scholar 

  7. Bie C, Gao Y, Su J, Dong YM, Guo XG, Sun XQ (2020) The efficient separation of thorium from rare earth using oxamic acid in hydrochloric acid medium. Sep Purif Technol 251:117358

    Article  CAS  Google Scholar 

  8. Hung NT, Thuan LB, Thanh TC, Watanabe M, Khoai DV, Thuy NT, Nhuan H, Minh PQ, Mai TH, Tung NV, Tra DTT, Jha MK, Lee JY, Jyothi RK (2020) Separation of thorium and uranium from xenotime leach solutions by solvent extraction using primary and tertiary amines. Hydrometallurgy 198:105506

    Article  CAS  Google Scholar 

  9. Dong YM, Li S, Su X, Wang YL, Shen YL, Sun XQ (2017) Separation of thorium from rare earths with high-performance diphenyl phosphate extractant. Hydrometallurgy 171:387–393

    Article  CAS  Google Scholar 

  10. Ma L, Zhao ZY, Dong YM, Sun XQ (2018) A synergistic extraction strategy by Cyanex572 and Cyanex923 for Th(IV) separation. Sep Purif Technol 191:307–313

    Article  CAS  Google Scholar 

  11. Kukkonen E, Virtanen EJ, Moilanen JO (2022) Alpha-Aminophosphonates, -Phosphinates, and -Phosphine oxides as extraction and precipitation agents for rare earth metals, Thorium, and Uranium: a review. Molecules 27:3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mir N, Castano CE, Rojas JV, Norouzi N, Esmaeili AR, Mohammadi R (2021) Self-separation of the adsorbent after recovery of rare-earth metals: designing a novel non-wettable polymer. Sep Purif Technol 259:118152

    Article  CAS  Google Scholar 

  13. Batra S, Awasthi A, Iqbal M, Datta D (2022) Solvent impregnated resins for the treatment of aqueous solutions containing different compounds: a review. Rev Chem Eng 38:209–242

    Article  CAS  Google Scholar 

  14. Yu C, Bao SX, Zhang YM, Chen B (2021) Separation and adsorption of V(V) from canadium-containing solution by TOMAC-impregnated resins. Chem Eng Res Des 174:405–413

    Article  CAS  Google Scholar 

  15. Dong TT, Xing HF, Wu HY, Lv YY, Wu LD, Mi S, Yang LR (2021) Preparation of magnetic Levextrel resin for cadmium(II) removal. Environ Technol Innovation 23:101657

    Article  CAS  Google Scholar 

  16. Kumar SS, Rao A, Yadav KK, Lenka RK, Singh DK, Tomar BS (2020) Selective removal of Am(III) and Pu(IV) from analytical waste solutions of quality control operations using extractant encapsulated polymeric beads. J Radioanal Nucl Chem 324:375–384

    Article  CAS  Google Scholar 

  17. Guo JK, Fan XH, Li YP, Yu SH, Zhang Y, Wang L, Ren XH (2021) Mechanism of selective gold adsorption on ion-imprinted chitosan resin modified by thiourea. J Hazard Mater 415:125617

    Article  CAS  PubMed  Google Scholar 

  18. Wang JL, Xie MY, Ma JJ, Wang HJ, Xu SM (2017) Extractant (2,3-dimethylbutyl)(2,4,4′-trimethylpentyl)phosphinic acid (INET-3) impregnated onto XAD-16 and its extraction and separation performance for heavy rare earths from chloride media. J Rare Earths 35:1239–1247

    Article  CAS  Google Scholar 

  19. Cui HM, Feng XJ, Shi JS, Liu WG, Yan NF, Rao GH, Wang W (2020) A facile process for enhanced rare earth elements separation from dilute solutions using N, N-di(2-ethylhexyl)-diglycolamide grafted polymer resin. Sep Purif Technol 234:116096

    Article  CAS  Google Scholar 

  20. Yuan LY, Bai ZQ, Zhao R, Liu YL, Li ZJ, Chu SQ, Zheng LR, Zhang J, Zhao YL, Chai ZF, Shi WQ (2014) Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium(IV) from aqueous solution. ACS Appl Mater Interfaces 6:4786–4796

    Article  CAS  PubMed  Google Scholar 

  21. Xiong XH, Tao Y, Yu ZW, Yang LX, Sun LJ, Fan YL, Luo F (2020) Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate. Chem Eng J 384:123240

    Article  CAS  Google Scholar 

  22. Zhang F, Ma KQ, Li Y, Ran Q, Yao CY, Yang CT, Yu HZ, Hu S, Peng SM (2020) Selective separation of thorium from rare earths and uranium in acidic solutions by phosphorodiamidate-functionalized silica. Chem Eng J 392:123717

    Article  CAS  Google Scholar 

  23. Kuang ST, Liao WP (2018) Progress in the extraction and separation of rare earths and related metals with novel extractants: a review. Sci China Tech Sci 61:1319–1328

    Article  CAS  Google Scholar 

  24. Yang XJ, Zhang ZF, Kuang ST, Wei HQ, Li YL, Wu GL, Geng AF, Li YH, Liao WP (2020) Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230. Hydrometallurgy 194:105343

    Article  CAS  Google Scholar 

  25. Lu YC, Zhang ZF, Li YL, Liao WP (2017) Extraction and recovery of cerium(IV) and thorium(IV) from sulphate medium by an α-aminophosphonate extractant. J Rare Earths 35:34–40

    Article  CAS  Google Scholar 

  26. Yin C, Xu C, Jia YX, Sun WZ, Wang CH, Zhou GZ, Xian M (2019) Insight into highly efficient removal of sulfonic acid pollutants by a series of newly-synthesized resins from aqueous media: Physical & chemical adsorption. J Taiwan Inst Chem Eng 95:383–392

    Article  CAS  Google Scholar 

  27. Cherkasov RA, Garifzyanov AR, Talan AS, Davletshin RR, Kurnosova NV (2009) Synthesis of new liophilic functionalized aminomethylphosphine oxides and their acid-base and membrane-transport properties toward acidic substrates. Russ J Gen Chem 79:1835–1849

    Article  CAS  Google Scholar 

  28. Yin C, Xu C, Yu WH, Jia YX, Sun WZ, Zhou GZ, Xian M (2019) Synthesis of a novel isatin and ethylenediamine modified resin and effective adsorption behavior towards Orange G. RSC Adv 9:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hou YY, Liu LJ, He Q, Zhang D, Jin JY, Jiang BH, Zhao LM (2022) Adsorption behaviors and kinetics studies of chitooligosaccharides with specific degree of polymerization on a novel ion-exchange resin. Chem Eng J 430:132630

    Article  CAS  Google Scholar 

  30. Su J, Guo XG, Gao Y, Wu S, Xu RG, Sun XQ (2021) Recovery of thorium and rare earths from leachate of ion-absorbed rare earth radioactive residues with N1923 and Cyanex® 572. J Rare Earths 39:1273–1281

    Article  CAS  Google Scholar 

  31. Ahamad T, Naushad M, Alshehri SM (2020) Fabrication of magnetic polymeric resin for the removal of toxic metals from aqueous medium: kinetics and adsorption mechanisms. J Water Process Eng 36:101284

    Article  Google Scholar 

  32. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Science Foundation of China (Grant No. 21701146), Young talents Enterprise Cooperative Innovation Team of Zhengzhou University (No. 32320418). There are no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcai Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Fu, Y., Wang, X. et al. Separation of thorium from radioactive rare-earth waste residue using aminophosphonate-functionalized polymer resin. J Radioanal Nucl Chem 332, 607–616 (2023). https://doi.org/10.1007/s10967-023-08769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08769-9

Keywords

Navigation