Skip to main content
Log in

Surface magnetized MgAl-LDHs and MgAl-LDO with excellent adsorption capacity and convenient recovery for the removal of U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An inorganic adsorbent with conveniently recovery performance is attractive in the treatment of uranium-containing wastewater. Herein magnetic Mg–Al layered double hydroxide composites (Mag-LDHs) and its calcination compound, Mag-LDHs (Mag-LDO), have been successfully prepared. Their physicochemical characteristic was analyzed with XRD, SEM, XPS, VSM, FT-IR, TGA, Zeta potential and N2 adsorption–desorption isotherms. The adsorption behavior of both adsorbents toward uranium were investigated. The solid–liquid separation could be conveniently achieved by external magnetic field. The maximum theoretical adsorption capacities toward U(VI) were 436.16 mg/g for Mag-LDHs and 317.71 mg/g for Mag-LDO. The adsorption capacity of Mag-LDHs and Mag-LDO retained 80.72% and 85.58% even undergoing five adsorption–desorption cycles. The study proposed Mag-LDHs and Mag-LDO as alternative uranium-specific adsorbents applicable in the acid wastewater (pH = 5.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available on request from the authors. The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Fan M, Xe W, Song Q, Zhang L, Ren B, Yang X (2021) Review of biomass-based materials for uranium adsorption. J Radioanal Nuclear Chem 330:589–602

    Article  CAS  Google Scholar 

  2. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013

    Article  CAS  Google Scholar 

  3. Kiran, Bharti R, Sharma R. Effect of heavy metals: an overview. Mater Today Proc 2022, 51: 880–885

  4. Guan X, Yuan X, Zhao Y, Bai J, Li Y, Cao Y, Chen Y, Xiong T (2022) Adsorption behaviors and mechanisms of Fe/Mg layered double hydroxide loaded on bentonite on Cd (II) and Pb (II) removal. J Colloid Interface Sci 612:572–583

    Article  CAS  Google Scholar 

  5. Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R (2022) Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev

  6. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155

    Article  CAS  Google Scholar 

  7. Zhao Y, Wang CJ, Gao W, Li B, Wang Q, Zheng L, Wei M, Evans DG, Duan X, O’Hare D (2013) Synthesis and antimicrobial activity of ZnTi-layered double hydroxide nanosheets. J Mater Chem B 1:5988–5994

    Article  CAS  Google Scholar 

  8. Wu D, He F, Dai Y, Xie Y, Ling Y, Liu L, Zhao J, Ye H, Hou Y (2022) A heterostructured ZnAl-LDH@ZIF-8 hybrid as a bifunctional photocatalyst/adsorbent for CO2 reduction under visible light irradiation. Chem Eng J 446:137003

    Article  CAS  Google Scholar 

  9. Nayak S, Parida K (2020) Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. Inorganic Chem Front 7:3805–3836

    Article  CAS  Google Scholar 

  10. Wei P-R, Cheng S-H, Liao W-N, Kao K-C, Weng C-F, Lee C-H (2012) Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. J Mater Chem 22:5503–5513

    Article  CAS  Google Scholar 

  11. Li J, Cui H, Song X, Zhang G, Wang X, Song Q, Wei N, Tian J (2016) Adsorption and intercalation of organic pollutants and heavy metal ions into MgAl-LDHs nanosheets with high capacity. RSC Adv 6:92402–92410

    Article  CAS  Google Scholar 

  12. Wang W-R, Li A, Mei W, Zhu R-R, Li K, Sun X-Y, Qian Y-C, Wang S-L (2015) Dexamethasone sodium phosphate intercalated layered double hydroxides and their therapeutic efficacy in a murine asthma model. RSC Adv 5:23826–23834

    Article  CAS  Google Scholar 

  13. Mishra G, Dash B, Pandey S (2018) Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci 153:172–186

    Article  CAS  Google Scholar 

  14. Tao Q, Reddy BJ, He H, Frost RL, Yuan P, Zhu J (2008) Synthesis and infrared spectroscopic characterization of selected layered double hydroxides containing divalent Ni and Co. Mater Chem Phys 112:869–875

    Article  CAS  Google Scholar 

  15. Guan X, Yuan X, Zhao Y, Wang H, Wang H, Bai J, Li Y (2022) Application of functionalized layered double hydroxides for heavy metal removal: A review. Sci Total Environ 838:155693

    Article  CAS  Google Scholar 

  16. Shandilya P, Sharma R, Arya RK, Kumar A, Vo D-VN, Sharma G (2021) Recent progress and challenges in photocatalytic water splitting using layered double hydroxides (LDH) based nanocomposites. Int J Hydrogen Energy 47(88):37438–37475

    Article  Google Scholar 

  17. Li K, Liu H, Li Q, Yao W, Wu L, Li S, Wang Q (2022) The role of doped-Mn on enhancing arsenic removal by MgAl-LDHs. J Environ Sci China 120:125–134

    Article  Google Scholar 

  18. Zhao XJ, Zhu YQ, Xu SM, Liu HM, Yin P, Feng YL, Yan H (2020) Anion exchange behavior of M(II)Al layered double hydroxides: a molecular dynamics and DFT study. Phys Chem Chem Phys 22:19758–19768

    Article  CAS  Google Scholar 

  19. Bi R, Yin D, Lei B, Chen F, Zhang R, Li W (2022) Mercaptocarboxylic acid intercalated MgAl layered double hydroxide adsorbents for removal of heavy metal ions and recycling of spent adsorbents for photocatalytic degradation of organic dyes. Sep Purif Technol 289:120741

    Article  CAS  Google Scholar 

  20. Wang C, Zhang R, Miao Y, Xue Q, Yu B, Gao Y, Han Z, Shao M (2021) Preparation of LDO@TiO2 core-shell nanosheets for enhanced photocatalytic degradation of organic pollution. Dalton Trans 50:17911–17919

    Article  CAS  Google Scholar 

  21. Yao W, Yu S, Wang J, Zou Y, Lu S, Ai Y, Alharbi NS, Alsaedi A, Hayat T, Wang X (2017) Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides. Chem Eng J 307:476–486

    Article  CAS  Google Scholar 

  22. Chen M, Li S, Li L, Jiang L, Ahmed Z, Dang Z, Wu P (2021) Memory effect induced the enhancement of uranium (VI) immobilization on low-cost MgAl-double oxide: Mechanism insight and resources recovery. J Hazard Mater 401:123447

    Article  CAS  Google Scholar 

  23. Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X (2021) Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review. Environ Pollut 291:118076

    Article  CAS  Google Scholar 

  24. Zhang J, Lu W, Zhan S, Qiu J, Wang X, Wu Z, Li H, Qiu Z, Peng H (2021) Adsorption and mechanistic study for humic acid removal by magnetic biochar derived from forestry wastes functionalized with Mg/Al-LDH. Sep Purif Technol 276:119296

    Article  CAS  Google Scholar 

  25. Kevin S, Fadi C, Alexandre G, Sylvie BC, Dario T, Benoit PP (2019) Room temperature blocked magnetic nanoparticles based on ferrite promoted by a three-step thermal decomposition process. J Am Chem Soc 141(25):9783–9787

    Article  Google Scholar 

  26. Zhu K, Chen C, Wang H, Xie Y, Wakeel M, Wahid A, Zhang X (2019) Gamma-ferric oxide nanoparticles decoration onto porous layered double oxide belts for efficient removal of uranyl. J Colloid Interface Sci 535:265–275

    Article  CAS  Google Scholar 

  27. Behbahani ES, Dashtian K, Ghaedi M (2021) Fe3O4-FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous removal of Pb (II), Cd (II), and Cu (II) heavy metal ions. J Hazard Mater 410:124560

    Article  CAS  Google Scholar 

  28. Tao Q, Xie J, Li Y, Dai Y, Liu Z (2022) Effects of dry processing on adsorption of uranium on Mg-Al layered double hydroxides and calcined layered double oxides. J Radioanal Nucl Chem 331:4587–4600

    Article  CAS  Google Scholar 

  29. Hou T, Yan L, Li J, Yang Y, Shan L, Meng X, Li X, Zhao Y (2020) Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem Eng J 384:123331

    Article  CAS  Google Scholar 

  30. Dai Y, Lv R, Fan J, Peng H, Zhang Z, Cao X, Liu Y (2020) Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium. J Hazard Mater 391:121467

    Article  CAS  Google Scholar 

  31. Helal AA, Ahmed I, Gamal R, Abo-El-Enein S, Helal A (2022) Sorption of uranium (VI) from aqueous solution using nanomagnetite particles; with and without humic acid coating. J Radioanal Nucl Chem 331:3005–3014

    Article  CAS  Google Scholar 

  32. Oguz E (2005) Adsorption characteristics and the kinetics of the Cr (VI) on the Thuja oriantalis. Colloids Surf, A 252:121–128

    Article  CAS  Google Scholar 

  33. Duan J, Ji H, Xu T, Pan F, Liu X, Liu W, Zhao D (2021) Simultaneous adsorption of uranium (VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chem Eng J 406:126752

    Article  CAS  Google Scholar 

  34. Chaudhary M, Singh L, Rekha P, Srivastava VC, Mohanty P (2019) Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chem Eng J 378:122236

    Article  CAS  Google Scholar 

  35. Yuvaraja G, Su M, Chen DY, Pang Y, Kong LJ, Subbaiah MV, Reddy GM (2020) Impregnation of magnetic-Momordica charantia leaf powder into chitosan for the removal of U (VI) from aqueous and polluted wastewater. Int J Biol Macromol 149:127–139

    Article  CAS  Google Scholar 

  36. Zhao C, Liu J, Deng Y, Tian Y, Zhang G, Liao J, Sun Q (2019) Uranium (VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J Clean Prod 236:117624

    Article  CAS  Google Scholar 

  37. El-Bohy MN, Abdel-Monem YK, Rabie KA, Farag NM, Mahfouz MG, Galhoum AA, Guibal E (2017) Grafting of arginine and glutamic acid onto cellulose for enhanced uranyl sorption. Cellulose 24:1427–1443

    Article  CAS  Google Scholar 

  38. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium (VI) adsorption by polypyrrole. J Hazard Mater 332:132–139

    Article  CAS  Google Scholar 

  39. Shao D, Li Y, Wang X, Hu S, Wen J, Xiong J, Marwani HM (2017) Phosphate-functionalized polyethylene with high adsorption of uranium (VI). ACS Omega 2(7):3267–3275

    Article  CAS  Google Scholar 

  40. Qin X, Yang W, Yang W, Ma Y, Li M, Chen C, Pan Q (2021) Covalent modification of ZIF-90 for uranium adsorption from seawater. Microporous Mesoporous Mater 323:111231

    Article  CAS  Google Scholar 

  41. Zhao S, Feng T, Feng L, Yan B, Sun W, Luo G, Wang N (2022) Rapid recovery of uranium with magnetic-single-molecular amidoxime adsorbent. Sep Purif Technol 287:120524

    Article  CAS  Google Scholar 

  42. Li Y, Dai Y, Tao QQ, Gao Z, Xu L (2022) Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism. Int J Biol Macromol 214:54–66

    Article  CAS  Google Scholar 

  43. Şenol ZM, Kaya S, Şimşek S, Katin KP, Özer A, Marzouki R (2022) Synthesis and characterization of chitosan-vermiculite-lignin ternary composite as an adsorbent for effective removal of uranyl ions from aqueous solution: experimental and theoretical analyses. Int J Biol Macromol 209:1234–1247

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This work is financially supported by the Natural Science Foundation of Jiangxi Province of China (20224BAB203030, 20212ACB213001), the National Natural Science Foundation of China (22066001), and Jiangxi Province Innovation and Entrepreneurship Training Program for College Students (S202110405025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinqin Tao or Ying Dai.

Ethics declarations

Conflict of interest

It should be understood that none of the authors have any financial or scientific conflicts of interest with regard to the research described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Lin, S., Bai, T. et al. Surface magnetized MgAl-LDHs and MgAl-LDO with excellent adsorption capacity and convenient recovery for the removal of U(VI). J Radioanal Nucl Chem 332, 325–335 (2023). https://doi.org/10.1007/s10967-022-08740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08740-0

Keywords

Navigation