Skip to main content
Log in

Synthesis and characterization of pollucite: a low-temperature immobilization method for 137Cs

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Aiming at radioactive cesium waste treatment, this work report a low-temperature immobilization method to convert Cs-polluted waste into pollucite. Results reveal that pollucite can be synthesized over a wide range of Cs content (36.5–53.2 wt.%) at 500 °C via the CsOH-Zeolite 4A-Silica gel system. The synthesized pollucite is composed of lamellar particles (0.8–2.5 μm) along with the agglomerates of small particles (0.1–0.3 μm) and Cs, Al, Si, O elements distribute uniformly on surface. Cs content and chemical stability analysis indicate 99.24% of Cs are immobilized and the leaching rate of Cs is on the order of 10–3 g/(m2 ·d).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jianda J, Tao Y (2019) Enrichment and ecological risk of cesium-137 in marine organisms in the waters adjacent to coastal nuclear power stations in China. Asian J Ecotoxicol 14(1): 67–74. 10.7524/AJE.1673–5897.20181101002

  2. Huiling W (2012) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Chin J Agric Biotechol 20(3):315

    Google Scholar 

  3. Haoran C, Xiaobin Z, Jiasheng R (2017) Removal of cesium from highly contaminated water in Fukushima Daiichi nuclear power station. Shandong Chem Ind 46(7):186–188

    Google Scholar 

  4. I.W. D, B.L. M, R.N.J. T, (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32:5851–5887. https://doi.org/10.1023/A:1018646507438

    Article  Google Scholar 

  5. Gabriele M, Rossella A, Giovanna V et al (2011) Borosilicate and aluminosilicate pollucite nanocrystals for the storage of radionuclides. Powder Technol 208(2):491–495. https://doi.org/10.1016/j.powtec.2010.08.048

    Article  CAS  Google Scholar 

  6. D.M. S, W.W. S, (1977) Characterization of pollucite as a material for the long term storage of cesium-137. Atlantic Richfield Hanford Co., Richland, WA (USA)

    Google Scholar 

  7. Richard MB (1969) The crystal structure and chemical composition of pollucite. Z Kristallogr Cryst Mater 129:280–302. https://doi.org/10.1524/zkri.1969.129.16.280

    Article  Google Scholar 

  8. W.H. T, (1938) Note on the structures of analcite and pollucite. Z Kristallogr Cryst Mater 99(1):283–290. https://doi.org/10.1524/zkri.1938.99.1.283

    Article  Google Scholar 

  9. Natsumi K, Koji N, Yoshinobu Y (2008) Crystal structure of pollucite. Z Kristallogr 223:584–590. https://doi.org/10.1524/zkri.2008.1103

    Article  CAS  Google Scholar 

  10. P. B, D. C, B. L, et al (2004) Safe trapping of Cs in heat-treated zeolite matrices. J Nucl Mater 324(2–3):183–188. https://doi.org/10.1016/j.jnucmat.2003.10.001

    Article  CAS  Google Scholar 

  11. Luis HO, Michael DK, Sean MM (2010) Pollucite and feldspar formation in sintered bentonite for nuclear waste immobilization. Appl Clay Sci 50:594–599. https://doi.org/10.1016/j.clay.2010.10.003

    Article  CAS  Google Scholar 

  12. Ian M, Jesus C, Clive BP (1999) Hydrothermal synthesis of pollucite (CsAlSi2O6) powders. J Am Ceram Soc 82(11):3242–3244. https://doi.org/10.1111/j.1151-2916.1999.tb02231.x

    Article  Google Scholar 

  13. Mia O, Ljiljana M, Jovana R et al (2016) Safe trapping of cesium into pollucite structure by hot-pressing method. J Nucl Mater 474:35–44. https://doi.org/10.1016/j.jnucmat.2016.03.006

    Article  CAS  Google Scholar 

  14. Zhenzi J, Wenbo H, Xiaojun H et al (2016) A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium. J Hazard Mater 306:220–229. https://doi.org/10.1016/j.jhazmat.2015.12.024

    Article  CAS  Google Scholar 

  15. Yuqian C, Zhenzi J, Kunchuan C et al (2018) Hydrothermal conversion of Cs-polluted soil into pollucite for Cs immobilization. Chem Eng J 336:503–509. https://doi.org/10.1016/j.cej.2017.11.187

    Article  CAS  Google Scholar 

  16. Zhenzi J, Kunchuan C, Yan L et al (2017) Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties. J Nucl Mater 488:63–69. https://doi.org/10.1016/j.jnucmat.2017.03.008

    Article  CAS  Google Scholar 

  17. Junjie F, Zhenzi J, Yi Z et al (2016) Mild hydrothermal synthesis of pollucite from soil for immobilization of Cs in situ and its characterization. Chem Eng J 304:344–350. https://doi.org/10.1016/j.cej.2016.06.077

    Article  CAS  Google Scholar 

  18. Zhenzi J, Yuan Y, Wenbo H et al (2018) Synthesis of pollucite with Cs-polluted incineration ash mixed with soil for immobilization of radioactive Cs. J Nucl Mater 510:141–148. https://doi.org/10.1016/j.jnucmat.2018.07.047

    Article  CAS  Google Scholar 

  19. Peigang H, Shuai H, Meng W et al. (2020) B2O3-assisted low-temperature crystallization of pollucite structures and their potential applications in Cs+ immobilization. J Nucl Mater 540:152314. https://doi.org/10.1016/j.jnucmat.2020.152314

  20. Lei L, Zhonghui X, Han L et al (2022) Immobilization of strontium and cesium by aluminosilicate ceramics derived from metakaolin geopolymer-zeolite A composites via 1100 °C heating treatment. Ceram Int 48(11):15236–15242. https://doi.org/10.1016/j.ceramint.2022.02.054

    Article  CAS  Google Scholar 

  21. Peigang H, Ruifei W, Shuai F et al (2019) Safe trapping of cesium into doping-enhanced pollucite structure by geopolymer precursor technique. J Hazard Mater 367:577–588. https://doi.org/10.1016/j.jhazmat.2019.01.013

    Article  CAS  Google Scholar 

  22. Guilin W, Bingsheng L, Zhentao Z, et al. (2019) Boron assisted low temperature immobilization of iodine adsorbed by silver-coated silica gel. J Nucl Mater 526:151758. https://doi.org/10.1016/j.jnucmat.2019.151758

  23. Guilin W, Xiaoyan S, Zhentao Z et al. (2020) B2O3–Bi2O3–ZnO based materials for low-sintering temperature immobilization of iodine adsorbed waste. J Solid State Chem 289:121518. https://doi.org/10.1016/j.jssc.2020.121518

  24. Yi L, Yaxin Feng, Guilin W et al. (2021) Synthesis of glass composite material with bismuthate glass powder and zeolite-4A for immobilization of iodine waste. J Solid State Chem 294:121856. https://doi.org/10.1016/j.jssc.2020.121856

  25. Yi L, Guilin W, Yaxin F et al (2020) The effect of boron on zeolite-4A immobilization of iodine waste forms with a novel preparation method. J Radioanal Nucl Chem 324:579–587. https://doi.org/10.1007/s10967-020-07079-8

    Article  CAS  Google Scholar 

  26. Yaxin F, Guilin W, Yi L et al. (2022) Crystallization behavior of boron in low-temperature immobilization of iodine waste. J Solid State Chem 305:122698. https://doi.org/10.1016/j.jssc.2021.122698

  27. Yaxin F, Guilin W, Zhentao Z et al (2022) Immobilization of iodine waste via the gas-pressure sintering of glass-bonded iodosodalite ceramic. Ceram Int 48:16312–16318. https://doi.org/10.1016/j.ceramint.2022.02.181

    Article  CAS  Google Scholar 

  28. Yoshinobu Y, Satoru I (1998) The crystal structure of analcime. Micropor Mesopor Mater 21(4–6):365–370. https://doi.org/10.1016/S1387-1811(98)00019-5

    Article  Google Scholar 

  29. Seyed Naser A, Akram Alavi D, Maryam A (2013) Phase transformation of zeolite P to Y and Analcime Zeolites due to changing the time and temperature. J Spectrosc 2013:428216. https://doi.org/10.1155/2013/428216

  30. Carmen S, Chi-Hong C, G. Diego G (2020) Single-crystal elastic properties of (Cs,Na)AlSi2O6·H2O pollucite: a zeolite with potential use for long-term storage of Cs radioisotopes. J Appl Phys 108:093509. https://doi.org/10.1063/1.3504613

  31. Saehwa C, Jacob AP, Brian JR et al (2018) Glass-bonded iodosodalite waste form for immobilization of 129I. J Nucl Mater 504:109–121. https://doi.org/10.1016/j.jnucmat.2018.03.033

    Article  CAS  Google Scholar 

  32. Klima KM, Schollbach K, Brouwers HJH, Yu Q (2022)Enhancing the thermal performance of Class F fly ash-based geopolymer by sodalite. Conster Build Mater 314:125574. https://doi.org/10.1016/j.conbuildmat.2021.125574

  33. Dumitru Doru Burduhos N, Mohd Mustafa Al Bakri A, Andrei Victor S et al. (2020) XRD and TG- DTA study of new alkali activated materials based on fly ash with sand and glass powder. Materials. 13(2):343. https://doi.org/10.3390/ma13020343

  34. Qin L, Hui X, Feihu L et al (2012) Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel 97:366–372. https://doi.org/10.1016/j.fuel.2012.02.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work reported here was supported by the Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory (No. 19kfhk02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Wei, G., Liu, Y. et al. Synthesis and characterization of pollucite: a low-temperature immobilization method for 137Cs. J Radioanal Nucl Chem 332, 467–478 (2023). https://doi.org/10.1007/s10967-022-08736-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08736-w

Keywords

Navigation