Skip to main content
Log in

Chemical stability of alkali elements’ uranyl vanadates in aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The chemical stability of uranyl vanadates AIVUO6∙nH2O (AI–Li, Na (n = 2), K, Rb, Cs (n = 0)) in aqueous solutions was investigated for the first time. The medium acidity was established to have the largest influence on the state of the studied compounds in heterogeneous aqueous-salt systems. The compounds were found to be stable in the pH range of 0 − 2–11 − 14. Alkaline elements uranyl vanadates’ solubility changes from 10−8 to 10−6 mol/l in neutral solutions to 10−4 to 10−1 mol/l in acidic and basic media. The chemical stability of AIVUO6⋅nH2O increases from lithium to caesium. The solubility products were calculated to be in the range of 10−29.2 (Li) to 10−34.1 (Cs). Gibbs free energies of the formation and dissolution of the studied compounds, their solubility curves and the speciation diagrams for U (VI) and V (V) in both liquid and solid phases were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krivovichev SV, Plášil J (2013) In: Burns PC, Sigmon GE (ed) Uranium: Cradle to Grave, Mineralogical Association of Canada, Winnipeg

  2. Crook T, Blake G (1910) On carnotite and an associated mineral complex from South Australia. Mineral Mag X I(71):271–284

    Google Scholar 

  3. Hillebrand W (1924) Carnotite and tyuyamunite and their ores in Colorado and Utah. Am J Sci 45:201–216. https://doi.org/10.2475/ajs.s5-8.45.201

    Article  Google Scholar 

  4. Hostetler P, Garrels R (1962) Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits. Econ Geol 57:137–167. https://doi.org/10.2113/GSECONGEO.57.2.137

    Article  CAS  Google Scholar 

  5. Mann AW (1974) Chemical ore genesis models for the precipitation of carnotite in calcrete. Mineral research laboratories division of mineralogy

  6. Chenoweth W (1991) Vanadium Mining in the Carrizo Mountains, 1942–1947; Open-File Report 378. Socorro, NM, USA, New Mexico Bureau of Mines and Mineral Resources

    Google Scholar 

  7. Chernikov AA (2010) Mineralogical and geochemical fertures of the uranium ore composition: scientific and practical importance. New Data Miner 45:101–111

    Google Scholar 

  8. Abed AM, Saffarini GA, Sadaqah RM (2014) Spatial distribution of uranium and vanadium in the upper phosphorite member in Eshidiyya basin, southern Jordan. Arab J Geosci 7:253–271. https://doi.org/10.1007/s12517-013-0837-1

    Article  CAS  Google Scholar 

  9. Xu J, Zhu S-Y, Luo T-Y, Zhou W, Li Y-L (2015) Uranium mineralization and its radioactive decay-induced carbonization in a black shale-hosted polymetallic sulfide ore layer, southwest China. Econ Geol 110:1643–1652. https://doi.org/10.2113/econgeo.110.6.1643

    Article  Google Scholar 

  10. Sharma RK, Putirka KD, Stone JJ (2016) Stream sediment geochemistry of the upper Cheyenne River watershed within the abandoned uranium mining region of the southern Black Hills, South Dakota, USA. Environ Earth Sci 75:823. https://doi.org/10.1007/s12665-016-5522-8

    Article  CAS  Google Scholar 

  11. Plasil J, Kampf AR, Skoda R, Cejka J (2019) Vandermeerscheite, a new uranyl vanadate related to carnotite, from Eifel. Ger J Geosci 64(3):219–227

    Article  Google Scholar 

  12. Barton RB (1958) Synthesis and properties of carnotite and its alkali analogues. Am Mineral 43:799–817. https://doi.org/10.3133/TEI645

    Article  CAS  Google Scholar 

  13. Lopes de Rodrigues E, Dion C, Leroy SM (1970) Sur l’etude du systeme: diuranate de sodium-hemipentoxyde de vanadium. Comptes Rendus de l’Académie des Sciences 25:1015–1017

    Google Scholar 

  14. Dion C (1974) Contribution a la counaissance du systeme UO3V2O5Na2O. Bull Soc Chim Fr 12:2701–2708

    Google Scholar 

  15. Cannery G, Pestelli V (1981) La sintesy della carnotite. Chem Commun 784−790

  16. Tabuteau A, Yarg HX, Sove S, Thevenin T, Pages M (1985) A. Cristallochimie et etude par resonance Mossbauer de 237Nb des phases A2(AnO2)2V2O8 (AK, Rb, Tl; AnU, Np) de structure carnotite. Mater Res Bull 20:595–600. https://doi.org/10.1016/0025-5408(85)90136-9

    Article  CAS  Google Scholar 

  17. Carnot MA (1987) Etude sur les reactions des vanadates an point de vue de l’analuse chimique. Comptes Rendus de l’Académie des Sciences 104:1850–1853

    Google Scholar 

  18. Abraham F, Dion S, Saadi M (1993) Carnotite analogues: synthesis and properties of the Na1-x, KxUO2VO4 solid solution (0 < x < 1). J Mater Chem 3(5):459–463. https://doi.org/10.1039/jm9930300459

    Article  CAS  Google Scholar 

  19. Abraham F, Dion C, Tancret N, Saadi M (1994) Ag2(UO2)2V2O8: A new compound with the carnotite structure. Synthesis, structure and properties. Adv Mater Res 1–2:511–520. https://doi.org/10.4028/www.scientific.net/AMR.1-2.511

    Article  Google Scholar 

  20. Chernorukov NG, Suleimanov E, Suchkov A (1998) Synthesis, structure, and properties of MII(VUO6)2×nH2O (MII: Ni, Zn, Cd). Russ J Org Chem 43(7):1085–1089. https://doi.org/10.1002/chin.199851024

    Article  CAS  Google Scholar 

  21. Chernorukov NG, Suleimanov E, Alimzhanov M (1999) Synthesis and study of new compounds of the uranovanadate family. Russ J Org Chem 44(9):1425–1429. https://doi.org/10.1002/CHIN.199951016

    Article  CAS  Google Scholar 

  22. Chernorukov NG, Suleimanov E, Suchkov A (1999) AII(VUO6)2⋅nH2O (AII=Mn, Fe Co, and Cu): Synthesis, structure, and properties. Russ J Inorg Chem 44(6):874–879

    CAS  Google Scholar 

  23. Chernorukov NG, Suleimanov EV, Knayzev AV, Klimov EYu (1999) Synthesis, structure and properties of compounds AIII(VUO6)3⋅nH2O (AIIIY, La, Ce, Sm, Dy, Lu). Radiochemistry 41(6):481–484

    Google Scholar 

  24. Chernorukov NG, Suleimanov EV, Feoktistova OY (2000) Synthesis and study of uranovanadates of the MIII(VUO6)3×nH2O series. Russ J Inorg Chem 45(12):1951–1959. https://doi.org/10.1002/chin.200124027

    Article  Google Scholar 

  25. Saadi M, Dion C, Abraham F (2000) Synthesis and crystal structure of the pentahydrated uranyl orthovanadate (UO2)3(VO4)2⋅5H2O, precursor for the new (UO2)3(VO4)2 Uranyl-vanadate. J Solid State Chem 150:72–80. https://doi.org/10.1006/jssc.1999.8549

    Article  CAS  Google Scholar 

  26. Suleimanov EV, Chernorukov NG, Karyakin NV, Knyazev AV (2003) Synthesis, structure, and physicochemical properties of lithium uranovanadate. Russ J Gen Chem 73(8):1233–1236. https://doi.org/10.1023/B:RUGC.0000007634.59886.D2

    Article  Google Scholar 

  27. Obbade S, Dion C, Saadi M, Abraham F (2004) Synthesis, crystal structure and electrical characterization of Cs4[(UO2)2(V2O7)O2], a uranyl divanadate with chains of corner-sharing uranyl square bipyramids. J Solid State Chem 177:1567–1574. https://doi.org/10.1016/j.jssc.2003.12.007

    Article  CAS  Google Scholar 

  28. Yanez JLR, Cortes MR, Moye ET, Lardizabal D, Riveros H, Cabrera MEM (2012) Synthesis of potassium and calcium uranovanadates, analogues of carnotite and metatyuyamunite minerals. Rev Mex Fis 58(3):253–257

    CAS  Google Scholar 

  29. Chernorukov NG, Nipruk OV, Eremina AA (2013) Uranyl orthovanadate of composition (UO2)3(VO4)2·4H2O: synthesis and characterization. Russ J Inorg Chem 58(5):578–581. https://doi.org/10.1134/S0036023613050057

    Article  CAS  Google Scholar 

  30. Wang Y, Yin X, Zhao Y, Gao Y, Chen L, Liu Z, Sheng D, Diwu J, Chai Z, Albrecht-Schmitt TE, Wang S (2015) Insertion of trivalent lanthanides into uranyl vanadate layers and frameworks. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.5b01141

    Article  Google Scholar 

  31. Mer A, Obbade S, Devaux P, Abraham F (2019) Structural evolution in the rare-earth uranyl-vanadates Ln2[(UO2)2V2O8]3·nH2O, singularity of the lanthanum compound and single-crystal-to-single-crystal partial dehydration. Cryst Growth Des 19:3305–3314. https://doi.org/10.1021/acs.cgd.9b0017

    Article  CAS  Google Scholar 

  32. Duribreux I, Dion C, Abraham F, Saadi M (1999) CsUV3O11, a new uranyl vanadate with a layered structure. J Solid State Chem 146(1):258–265. https://doi.org/10.1006/jssc.1999.8349

    Article  CAS  Google Scholar 

  33. Dion C, Obbade S, Raekelboom E, Abraham F, Saadi M (2000) Synthesis, crystal structure, and comparison of two new uranyl vanadate layered compounds: M6(UO2)5(VO4)2O5 with M=Na. K J Solid State Chem 155(2):342–353. https://doi.org/10.1006/jssc.2000.8923

    Article  CAS  Google Scholar 

  34. Duribreux I, Saadi M, Obbade S, Dion C, Abraham F (2003) Synthesis and crystal structure of two new uranyl oxychloro-vanadate layered compounds: M7(UO2)8(VO4)2O8Cl with M=Rb. Cs J Solid State Chem 172(2):351–363. https://doi.org/10.1016/S0022-4596(02)00121-4

    Article  CAS  Google Scholar 

  35. Obbade S, Dion C, Duvieubourg L, Saadi M, Abraham F (2003) Synthesis and crystal structure of alpha and beta-Rb6U5V2O23, a new layered compound. J Solid State Chem 173(1):1–12. https://doi.org/10.1016/S0022-4596(03)00052-5

    Article  CAS  Google Scholar 

  36. Obbade S, Dion C, Saadi M, Yagoubi S, Abraham F (2004) Pb(UO2)(V2O7), a novel lead uranyl divanadate. J Solid State Chem 177(11):3909–3917. https://doi.org/10.1006/jssc.2000.8923

    Article  CAS  Google Scholar 

  37. Obbade S, Dion C, Rivenet M, Saadi M, Abraham F (2004) A novel open-framework with non-crossing channels in the uranyl vanadates A(UO2)4(VO4)3 (A=Li, Na). J Solid State Chem 177:2058–2067. https://doi.org/10.1016/J.JSSC.2004.02.011

    Article  CAS  Google Scholar 

  38. Obbade S, Duvieubourg L, Dion C, Abraham F (2007) Three-dimensional framework of uranium-centered polyhedral with non-intersecting channels in the uranyl oxy-vanadates A2(UO2)3(VO4)2O (A–Li, Na). J Solid State Chem 180:866–872. https://doi.org/10.1016/J.JSSC.2006.12.014

    Article  CAS  Google Scholar 

  39. Rivenet M, Vigier N, Roussel P, Abraham F (2007) Hydrothermal synthesis, structure and thermal stability of diamine templated layered uranyl-vanadates. J Solid State Chem 180:713–724. https://doi.org/10.1016/j.jssc.2006.11.034

    Article  CAS  Google Scholar 

  40. Obbade S, Renard C, Abraham F (2009) New open-framework in the uranyl vanadates A3(UO2)7(VO4)5O (A–Li, Ag) with intergrowth structure between A(UO2)4(VO4)3 and A2(UO2)3(VO4)2O. J Solid State Chem 182:413–420. https://doi.org/10.1016/J.JSSC.2008.10.019

    Article  CAS  Google Scholar 

  41. Jouffret L, Rivenet M, Abraham F (2010) A new series of pillared uranyl-vanadates based on uranophane-type sheets in the uranium-vanadium-linear alkyl diamine systems. J Solid State Chem 183:84–92. https://doi.org/10.1002/CHIN.201016018

    Article  CAS  Google Scholar 

  42. Jouffret L, Shao Z, Rivenet M, Abraham F (2010) New three-dimensional inorganic frameworks based on the uranophane-type sheet in monoamine templated uranyl-vanadates. J Solid State Chem 183:2290–2297. https://doi.org/10.1002/CHIN.201104020

    Article  CAS  Google Scholar 

  43. Mer A, Obbade S, Rivenet M, Renard C, Abraham F (2012) [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology. J Solid State Chem 185:180–186. https://doi.org/10.1016/J.JSSC.2011.10.042

    Article  CAS  Google Scholar 

  44. Senchyk GA, Wylie EM, Prizio S, Szymanowski JES, Sigmon GE, Burns PC (2015) Hybrid Uranyl-Vanadium Nano-Wheels. Chem Commun 51:10134–10137. https://doi.org/10.1039/C5CC01524C

    Article  CAS  Google Scholar 

  45. Qiu J, Dembowski M, Szymanowski JES, Toh WC, Burns PC (2016) Time-resolved x-ray scattering and raman spectroscopic studies of formation of a uranium-vanadium-phosphorus-peroxide cage cluster. Inorg Chem 55:7061–7067. https://doi.org/10.1021/acs.inorgchem.6b00918

    Article  CAS  Google Scholar 

  46. Chong S, Aksenov SM, Bo FD, Perry SN, Dimakopoulou F, Burns PC (2019) Framework polymorphism and modular crystal structures of uranyl vanadates of divalent cations: synthesis and characterization of M(UO2)(V2O7) (M=Ca, Sr) and Sr3(UO2)(V2O7)2. Z Anorg Allg Chem 645:981–987. https://doi.org/10.1002/zaac.201900092

    Article  CAS  Google Scholar 

  47. Appleman DE, Evans HT (1965) The crystal structures of synthetic anhydrous carnotite, K2(UO2)2V2O8 and its cesium analogue, Cs2(UO2)2V2O8. Am Mineral 50:825–842

    CAS  Google Scholar 

  48. Dickens PG, Stuttard GP, Ball RGJ, Powell AV, Hull S, Patat S (1992) Powder neutron diffraction study of the mixed uranium-vanadium oxides Cs2(UO2),(V2O8) and UVO5 //. J Mater Chem 2:161–166. https://doi.org/10.1039/JM9920200161

    Article  CAS  Google Scholar 

  49. Borene J, Cesbron F (1970) Structure crystalline de l’uranyl-vanadate de nickel tetrahydrate Ni(UO2)2(VO4)2⋅4H2O. Bull Soc Fr Minér Cryst 93:426–432. https://doi.org/10.3406/BULMI.1970.6490

    Article  CAS  Google Scholar 

  50. Borene J, Cesbron F (1971) Structure crystalline de la curienite Pb(UO2)2(VO4)2⋅5H2O. Bull Soc Fr Minér Cryst 94:8–14. https://doi.org/10.3406/BULMI.1971.6544

    Article  Google Scholar 

  51. Shashkin DP (1975) Cristallicheskaya structura fransfillita (crystal structure of fransfillite). Dokl Akad Nauk SSSR 220(6):1410–1413

    CAS  Google Scholar 

  52. Abraham F, Obbade S (2006) In: Krivovichev SV, Burns PC, Tananaev IG (ed) Structural Chemistry of Inorganic Actinide Compounds, 1rd edn Elsevier

  53. Plasil J (2017) Crystal structure of vanuralite, Al[(UO2)2(VO4)2](OH)⋅8.5H2O. Z. Kristallogr Cryst Mater 232(12): 807−814 https://doi.org/10.1515/zkri-2017-2054

  54. Chernorukov NG, Nipruk OV, Eremina AA (2013) Role of interlayer Mk atoms and H2O molecules in the structure formation of Mk(VUO6)k·nH2O uranovanadates. Russ J Inorg Chem 58(11):1432–1437. https://doi.org/10.1134/S0036023613110065

    Article  CAS  Google Scholar 

  55. Baran EJ, Botto IL (1976) Das Schwingungsspektrum des synthetischen carnotits. Monatsh Chem 107:633–639. https://doi.org/10.1007/BF00906769

    Article  CAS  Google Scholar 

  56. Chernorukov NG, Suleimanov EV, Knyazev AV, Vyshinskii NN, Klimov EY (2000) Vibrational spectra of uni-and bivalent metal uranovanadates. Russ J Gen Chem 70(9):1330–1336

    CAS  Google Scholar 

  57. Frost RL, Cejka J, Weier ML, Martens W, Henry DA (2005) Vibrational spectroscopy of selected natural uranyl vanadates. Vib Spectrosc 39:131–138. https://doi.org/10.1016/j.vibspec.2005.01.005

    Article  CAS  Google Scholar 

  58. Spano TL, Dzik EA, Sharifironizi M, Dustin MK, Turner M, Burns PS (2017) Thermodynamic investigation of uranyl vanadate minerals: Implications for structural stability. Am Mineral 102:1149–1153. https://doi.org/10.2138/am-2017-5894

    Article  Google Scholar 

  59. Gulia VG, Nemkova OG (1961) Issledovanie sostava osazhdennyh uranovanadatov (Investigation of the composition of precipitated uranovanadates). In: Spitsyn VI (ed) Issledovanie v oblasti chimii urana (Research in the field of uranium chemistry), MSU, Moskow

  60. Gulia VG, Nemkova OG (1961) Osazhdenie uranovanadatov v prisutstvii solei nekotoryh metallov (Precipitation of uranyl vanadates in the presence of salts of some metals). In: Spitsyn VI (ed) Issledovanie v oblasti chimii urana (Research in the field of uranium chemistry), MSU, Moskow

  61. Garrels R, Christ C (1965) Solutions. Minerals and Equilibria, Harper and Row, New York

    Google Scholar 

  62. Langmur D (1972) Uranium solutionmineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42(6):547–569. https://doi.org/10.1016/0016-7037(78)90001-7

    Article  Google Scholar 

  63. Zhil’tsova IG, Shmariovich LI, Polypanov LI, Perlina SA (1982) Physico-chimicheskie usloviya formirovaniya rudnoi karnotitovoy mineralizacii (Physico-chemical conditions of formation of ore carnotite mineralization). Lithol Min Resour 6:49–61

    Google Scholar 

  64. Zhiltsova IG, Shmariovich EM, Polupanova LI, Perlina SA (1989) Physico-chimicheskie usloviya formirovaniya rudnoi uranyl vanadatnoi mineralizacii (Physico-chemical conditions of formation of ore uranyl vanadate mineralization). Lithol Min Resour 4:54–71

    Google Scholar 

  65. Bhatti TM, Vuorinen A, Lehtinen MK, Tuovinen OH (1997) Acid dissolution of uranophane and carnotite. J Environ Sci Health, Part A 32(6):1827–1835. https://doi.org/10.1080/10934529709376646

    Article  Google Scholar 

  66. Chernorukov NG, Karyakin NV, Suleymanov EV, Knyazev AV, Alimzhanov MI (1997) New data about conditions of the formation of uranium minerals of carnotite group and their analogies. Annu Meet Nucl Technol 97:369–370

    Google Scholar 

  67. Tokunaga TK, Kim Y, Wan J (2009) Potential remediation approach for uranium-contaminated ground waters through potassium uranyl vanadate precipitation. Environ Sci Technol 43:5467–5471. https://doi.org/10.1021/ES900619S

    Article  CAS  Google Scholar 

  68. Tokunaga TK, Kim Y, Wan J, Li Y (2012) Aqueous uranium (VI) concentrations controlled by calcium uranyl vanadate precipitates. Environ Sci Technol 46:7471–7477. https://doi.org/10.1021/es300925u

    Article  CAS  Google Scholar 

  69. Ranalli AJ, Yager DB, Yager DB (2016) Use of mineral/solution equilibrium calculations to assess the potential for carnotite precipitation from groundwater in the Texas Panhandle. USA Appl Geochem 73:118–131. https://doi.org/10.1016/j.apgeochem.2016.08.004

    Article  CAS  Google Scholar 

  70. Avasarala S, Brearley AJ, Spilde M, Peterson E, Jiang YB, Benavidez A, Cerrato JM (2020) Crystal chemistry of carnotite in abandoned mine wastes. Minerals 10:883–902. https://doi.org/10.3390/min10100883

    Article  CAS  Google Scholar 

  71. Avasarala SM, Lichtner PC, Ali A-MS, González-Pinzón R, Blake JM, Cerrato JM (2017) Reactive transport of u and v from abandoned uranium mine wastes. Environ Sci Technol 1(21):12385–12393. https://doi.org/10.1021/acs.est.7b03823

    Article  CAS  Google Scholar 

  72. Blake JM, Avasarala S, Artyushkova K, Ali AMS, Brearley AJ, Shuey C, Robinson WP, Nez C, Bill S, Lewis J, Hirani C, Pacheco JSL, Cerrato JM (2015) Elevated concentrations of u and co-occurring metals in abandoned mine wastes in a Northeastern Arizona Native American Community. Environ Sci Technol 49(14):8506–8514. https://doi.org/10.1021/acs.est.5b01408

    Article  CAS  Google Scholar 

  73. Ghorbani Y, Montenegro MR (2016) Leaching behaviour and the solution consumption of uranium-vanadium ore in alkali carbonate-bicarbonate column leaching. Hydromet 161:127–137. https://doi.org/10.1016/j.hydromet.2016.02.004

    Article  CAS  Google Scholar 

  74. Manaa ESA (2020) Successive recovery of vanadium and uranium from carnotite-bearing kaolinite sample, Southwestern Sinai. Egypt J Radioanal Nucl Chem 325(2):493–502. https://doi.org/10.1007/s10967-020-07244-z

    Article  CAS  Google Scholar 

  75. Nipruk OV, Chernorukov NG, Eremina AA, Kostrova EL, Chaplieva KA (2014) Behavior of rare earth uranovanadates in aqueous solutions. Radiochem 56(4):392–399

    Article  CAS  Google Scholar 

  76. Nipruk OV, Chernorukov NG, Chaplieva KA, Chernorukov NG, Abrazheev RV (2019) State of uranovanadates of d-transition elements in heterogeneous aqueous-salt systems. Radiochem 61(5):520–528. https://doi.org/10.1134/S1066362219050023

    Article  CAS  Google Scholar 

  77. Vinogradov AP, Ryabchikov DI, Senyavin MM (1962) Analiticheskaya khimiya urana (Analytical chemistry of uranium). Akademiya nauk, Moskow

  78. Markov VK, Vernyi EA, Vinogradov AV et al (1964) Uran. Metody ego opredeleniya (Uranium. Determination Methods). Atomizdat, Moscow

  79. Mitsuike A (1986) Methody koncentrirovaniya microelementov v neorganicheskom analize (Methods of concentrating of trace elements in inorganic analysis). Chimiya, Moscow

    Google Scholar 

  80. Muzgin VN, Khamzina LB, Zolotavin LV, Bezrukov IA (1981) Analiticheskaya khimiya vanadiya (Analytical chemistry of vanadium). Science, Moscow

    Google Scholar 

  81. Gur’ev IA, Kalugin AA, Abrazheev RV, Nipruk OV, Egorova OA (2000) Photometric determination of trace uranium(VI), phosphorus(V), arsenic(V), and vanadium(V) in saturated aqueous solutions of poorly soluble compounds. J Anal Chem 55(10):1060–1064. https://doi.org/10.1007/BF02756086

    Article  Google Scholar 

  82. Glushko VP (1981) Thermal constants of substances. USSR Academy of Sciences, Moscow

    Google Scholar 

  83. Grenthe I, Fuger J, Koning R et al (2004) Chemical thermodynamics of uranium. North-Holland, Amsterdam

    Google Scholar 

  84. Guillaumont R, Fanghanel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the Chemical Thermodynamics of Uranium, Neptunium, and Plutonium. Elsevier, Amsterdam

    Google Scholar 

  85. Pettersson L, Hedman B, Andersson I, Ingri N (1983) Multicomponent polyanions. 34. hydrolysis and equilibria of the H+−H2VO4 system in 0.6 M NaCl. Chem Scr 22:254–264

    CAS  Google Scholar 

  86. Povar I, Spinu O, Zinicovscaia I, Pintilie B, Ubaldini S (2019) Revised Pourbaix diagrams for the vanadiumwater system. J Electrochem Sci Eng 9(2):75–84. https://doi.org/10.5599/jese.620

    Article  CAS  Google Scholar 

  87. Kramer-Schnabel U, Bischoff H, Xi RH, Marx G (1992) Solubility products and complex formation equilibria in the systems uranyl hydroxide and uranyl carbonate at 25 °C and I=0.1 M. Radiochim, Acta 56:183–188. https://doi.org/10.1524/ract.1992.56.4.183

    Article  CAS  Google Scholar 

  88. Yamamura T, Kitamura A, Fukui A, Nishikawa S, Yamamoto T, Moriyama H (1998) Solubility of U(VI) in Highly Basic Solutions. Radiochim Acta 83:139–146. https://doi.org/10.1524/ract.1998.83.3.139

    Article  CAS  Google Scholar 

  89. Kiseleva EK, Suslennikova VM (1959) Spravochnoe rukovodstvo po prigotovleniyu titrovannykh rastvorov I ustanovke ikh titrov (handbook on preparation of titrated solutions and determination of their titers). Akad. im. AF Mozhaiskogo, Leningrad

  90. Dunn HW (1956) X-ray diffraction data for some uranium compound. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  91. Trypuc M, Kielkowska U, Chalat M (2002) Solubility investigations in the NaCl + V2O5 + H2O System from 293 K to 323 K. J Chem Eng Data 47(4):765–767. https://doi.org/10.1021/JE010212R

    Article  CAS  Google Scholar 

  92. Nipruk OV, Chernorukov NG, Elipasheva EV, Klinshova KA, Bakhmetev MO (2020) State of uranyl arsenates MIAsUO6·nH2O (MIH+, Li+, Na+, K+, Rb+, Cs+, NH4+) in aqueous solution. J Radioanal Nucl Chem 324:233–244. https://doi.org/10.1007/s10967-020-07062-3

    Article  CAS  Google Scholar 

  93. Chernorukov NG, Nipruk OV, Pykhova YuP, Godovanova NS (2011) State of Uranophosphates MIPUO6·nH2O (MI=H+, Li+, Na+, K+, Rb+, Cs+, NH4+) in Saturated Aqueous Solutions. Radiochem 53(4):361–369. https://doi.org/10.1134/S1066362211040047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation, project № 0729-2020-0039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana V. Nipruk.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nipruk, O.V., Chernorukov, N.G., Klinshova, К.A. et al. Chemical stability of alkali elements’ uranyl vanadates in aqueous solutions. J Radioanal Nucl Chem 332, 355–367 (2023). https://doi.org/10.1007/s10967-022-08733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08733-z

Keywords

Navigation