Skip to main content
Log in

The new international reference system for pure α- and pure β-emitting radionuclides and some electron capture decaying radionuclides by liquid scintillation counting

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Bureau International des Poids et Mesures (BIPM) is developing, with the support of national metrology institutes, an extension to the existing international reference system for international comparisons in radionuclide metrology. The extended system is addressing pure α-, pure β-emitting and some electron capture-decaying radionuclides. The new system is based on a custom-built liquid scintillation counter and the triple-to-double coincidence ratio (TDCR) technique. Particular emphasis was placed on long-term stability and excellent reproducibility in sample preparation. The analytical method is based on a special approach that uses the TDCR value as a parameter to compensate for fluctuations caused by changes in detection efficiency or photomultiplier asymmetries that cannot be excluded when considering very long periods. Measures for quality assurance were established. They are based on periodic controls of unquenched toluene-based liquid scintillation sources with 3H and 14C. In this way, the reproducibility of the system results is demonstrated for a test period of about twenty months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. CIPM 2003 Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes

  2. Karam LR (2007) Application of the CIPM MRA to radionuclide metrology. Metrologia 44:4–9

    Article  Google Scholar 

  3. Rytz A (1983) The international reference system for activity measurements of γ-ray emitting nuclides. Int J Appl Radiat Isot 34:1047–1056

    Article  CAS  Google Scholar 

  4. Ratel G (2007) The Système International de Référence and its application in key comparisons. Metrologia 44:7–16

    Article  Google Scholar 

  5. Karam L, Judge S, Louw W (2019) The international measurement system for radionuclide metrology: a strategy for the future Appl. Radiat Isot 154:108838

    Article  CAS  Google Scholar 

  6. Michotte C, Nonis M, Bobin C, Altzizoglou T, Sibbens G (2013) The SIRTI: a new tool developed at the BIPM for comparing activity measurements of short-lived radionuclides world-wide

  7. Coulon R, Courte S, Judge S, Michotte C, Nonis M (2022) Digitalization of the reporting of key comparisons for radionuclide metrology. Meas Sci Technol 33:024003

    Article  CAS  Google Scholar 

  8. Sgouros G, Bodei L, McDevitt MR, Nedrow JR (2020) Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 19:589–608

    Article  CAS  Google Scholar 

  9. Parker C, Lewington V, Shore N, Kratochwil C, Levy M, Lindén O, Noordzij W, Park J, Saad F (2018) Targeted alpha therapy, an emerging class of cancer agents. JAMA Oncol 4:1765

    Article  Google Scholar 

  10. Duchemin C, Ramos JP, Stora T, Ahmed E, Aubert E, Audouin N, Barbero E, Barozier V, Bernardes A-P, Bertreix P, Boscher A, Bruchertseifer F, Catherall R, Chevallay E, Christodoulou P, Chrysalidis K, Cocolios TE, Comte J, Crepieux B, Deschamps M, Dockx K, Dorsival A, Fedosseev VN, Fernier P, Formento-Cavaier R, El Idrissi S, Ivanov P, Gadelshin VM, Gilardoni S, Grenard J-L, Haddad F, Heinke R, Juif B, Khalid U, Khan M, Köster U, Lambert L, Lilli G, Lunghi G, Marsh BA, Palenzuela YM, Martins R, Marzari S, Menaa N, Michel N, Munos M, Pozzi F, Riccardi F, Riegert J, Riggaz N, Rinchet J-Y, Rothe S, Russell B, Saury C, Schneider T, Stegemann S, Talip Z, Theis C, Thiboud J, van der Meulen NP, van Stenis M, Vincke H, Vollaire J, Vuong N-T, Webster B, Wendt K, Wilkins SG (2021) CERN-MEDICIS: a review since commissioning in 2017. Front Med. https://doi.org/10.3389/fmed.2021.693682

    Article  Google Scholar 

  11. Iravani A, Violet J, Azad A, Hofman MS (2020) Lutetium-177 prostate-specific membrane antigen (PSMA) theranostics: practical nuances and intricacies. Prostate Cancer Prostatic Dis 23:38–52

    Article  CAS  Google Scholar 

  12. Michotte C, Ratel G, Courte S, Johansson L, Keightley J, Arinc A, Bakhshandeiar E, Pommé S, Altzitzoglou T, Paepen J, Van Ammel R (2014) BIPM comparison BIPM.RI(II)-K1.Lu-177 of activity measurements of the radionuclide 177 Lu for the NPL (UK) and the IRMM (EU), with linked results for the comparison CCRI(II)-K2.Lu-177. Metrologia 51:06002

    Article  Google Scholar 

  13. Michotte C, Courte S, Nonis M, Coulon R, Judge S, Ratel G, Fréchou C, Cassette P, Keightley J, Kossert K, Nähle O (2021) Final report of the new BIPM comparison BIPM.RI(II)-K1.Ra-223 of activity measurements of the radionuclide 223 Ra including the 2014 result of the NPL (United Kingdom), the 2014 result of the PTB (Germany) and the 2018 result of the LNE-LNHB (France). Metrologia 58:06007

    Article  Google Scholar 

  14. Michotte C, Courte S, Nonis M, Coulon R, Judge S, Kossert K, Nähle O (2021) Final report of the new BIPM comparison BIPM.RI(II)-K1.Ac-225 of activity measurements of the radionuclide 225 Ac to include the 2019 result of the PTB (Germany). Metrologia 58:06018

    Article  Google Scholar 

  15. Wallenius M, Lützenkirchen K, Mayer K, Varga Z (2018) Actinides: nuclear. Forensics Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Chichester, pp 1–17

    Book  Google Scholar 

  16. Jiang J, Davies A, Thorne K, Gilligan C (2017) Rapid analysis of 89Sr and 90Sr in nuclear forensics samples. J Radioanal Nucl Chem 311:1417–1425

    Article  CAS  Google Scholar 

  17. Jiang J, Davies AV, Britton RE (2017) Measurement of 160Tb and 161Tb in nuclear forensics samples. J Radioanal Nucl Chem 314:727–736

    Article  CAS  Google Scholar 

  18. Pochwalski K, Broda R, Radoszewski T (1988) Standardization of pure beta emitters by liquid-scintillation counting. Int J Radiat Appl Instrum Part A Appl Radiat Isot 39:165–172

    Article  CAS  Google Scholar 

  19. Broda R (2003) A review of the triple-to-double coincidence ratio (TDCR) method for standardizing radionuclides. Appl Radiat Isot 58:585–594

    Article  CAS  Google Scholar 

  20. Nedjadi Y, Duc PF, Bochud F, Bailat C (2016) On the stability of 3H and 63Ni Ultima Gold liquid scintillation sources. Appl Radiat Isot 118:25–31

    Article  CAS  Google Scholar 

  21. Coulon R, Broda R, Cassette P, Courte S, Jerome S, Judge S, Kossert K, Liu H, Michotte C, Nonis M (2020) The international reference system for pure β-particle emitting radionuclides: an investigation of the reproducibility of the results. Metrologia 57:035009

    Article  CAS  Google Scholar 

  22. Coulon R, Judge S, Liu H, Michotte C (2021) The international reference system for pure beta-particle emitting radionuclides: an evaluation of the measurement uncertainties. Metrologia 58:025007

    Article  CAS  Google Scholar 

  23. Kossert K, Sabot B, Cassette P, Coulon R, Liu H (2020) On the photomultiplier-tube asymmetry in TDCR systems. Appl Radiat Isot 163:109223

    Article  CAS  Google Scholar 

  24. Broda R, Bonková I, Capogni M, Carconi P, Cassette P, Coulon R, Courte S, De FP, Dziel T, Fazio A, Frechou C, Galea R, García-Toraño E, Kołakowska E, Kossert K, Krivošík M, Lech E, Lee KB, Liang J, Listkowska A, Liu H, Navarro N, Nähle OJ, Nowicka M, van Rooy M, Sabot B, Saganowski P, Sato Y, Tymiński Z, Yunoki A, Zhang M, Ziemek T (2021) The CCRI(II)-K2.Fe-55.2019 key comparison of activity concentration measurements of a 55 Fe solution. Metrologia 58:06010

    Article  Google Scholar 

  25. EURAMET (2015) Guidelines on the calibration of non-automatic weighing instruments

  26. Lourenço V, Bobin C (2015) Weighing uncertainties in quantitative source preparation for radionuclide metrology. Metrologia 52:S18-29

    Article  Google Scholar 

  27. Bobin C, Bouchard J (2006) A 4π(LS)β-γ coincidence system using a TDCR apparatus in the β-channel. Appl Radiat Isot 64:124–130

    Article  CAS  Google Scholar 

  28. Cassette P, Do P (2008) The Compton source efficiency tracing method in liquid scintillation counting: a new standardization method using a TDCR counter with a Compton spectrometer. Appl Radiat Isot 66:1026–1032

    Article  CAS  Google Scholar 

  29. Gigahertz-Optik https://www.gigahertz-optik.com/en-us/product/odm98-b/

  30. Zhong X, Li Yu, Sun J, Zhang Y (1993) Radiation stability of PTFE irradiated under various conditions. Polym Degrad Stab 39:187–191

    Article  CAS  Google Scholar 

  31. Pochwalski K (1999) Unpublished note from Krzysztof Pochwalski

  32. Mitev K, Cassette P, Jordanov V, Liu HR, Dutsov C (2017) Design and performance of a miniature TDCR counting system. J Radioanal Nucl Chem 314:583–589

    Article  CAS  Google Scholar 

  33. Jordanov V, Cassette P, Dutsov C, Mitev K (2020) Development and applications of a miniature TDCR acquisition system for in-situ radionuclide metrology. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 954:161202

    Article  CAS  Google Scholar 

  34. Bouchard J, Cassette P (2000) MAC3: an electronic module for the processing of pulses delivered by a three photomultiplier liquid scintillation counting system. Appl Radiat Isot 52:669–672

    Article  CAS  Google Scholar 

  35. Dutsov C, Cassette P, Sabot B, Mitev K (2020) Evaluation of the accidental coincidence counting rates in TDCR counting. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 977:164292

    Article  CAS  Google Scholar 

  36. Akgun U, Ayan AS, Aydin G, Duru F, Olson J, Onel Y (2008) Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes. J Instrum 3:T01001

    Article  Google Scholar 

  37. Bobin C, Thiam C, Chauvenet B, Bouchard J (2012) On the stochastic dependence between photomultipliers in the TDCR method. Appl Radiat Isot 70:770–780

    Article  CAS  Google Scholar 

  38. Coulon R (2021) Evaluation of the long-term stability of metrology instruments. In: Velychko O (ed) Applied aspects of modern metrology. IntechOpen, London

    Google Scholar 

  39. Anon Discussion with Benoit Sabot (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Coulon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Philippe Cassette and Steven Judge: Now retired.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulon, R., Broda, R., Cassette, P. et al. The new international reference system for pure α- and pure β-emitting radionuclides and some electron capture decaying radionuclides by liquid scintillation counting. J Radioanal Nucl Chem 331, 3221–3230 (2022). https://doi.org/10.1007/s10967-022-08337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08337-7

Keywords

Navigation