Skip to main content
Log in

Determination of soil porosity by a simple and novel technique of fusing thoron diffusion experiment and modeling

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the thoron diffusion characteristic in soil is used as a tool to measure the porosity of the soil. The feasibility is demonstrated by a simple and compact experimental set up. The soil matrix, whose porosity is to be measured, is placed between the thoron source on side and an air chamber connected to thoron monitor on the other end. The methodology is based on reproducing the experimental results by theoretical modeling involving fixing of the input thoron diffusion coefficient by repeated trials. The porosity is estimated by using the empirical relation involving porosity and thoron diffusion coefficient in soil. The values are compared with porosity estimations through true density (particle density) measurements with pycnometer. A good agreement is observed between both the measurements techniques and the relative error is found to be within 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tokonami S (2005) Summary of dosimetry (radon and thoron) studies. International congress series, vol 1276. Elsevier, Amsterdam, pp 151–154

    Google Scholar 

  2. Ramachandran TV, Sathish LA (2014) Environmental thoron (220Rn): a review. Res J Chem Environ Sci 2(2):05–31

    Google Scholar 

  3. McLaughlin J (2010) An overview of thoron and its progeny in the indoor environment. Radiat Prot Dosim 141(4):316–321

    Article  CAS  Google Scholar 

  4. Csige I, Szabo Z, Szabo C (2012) Experimental technique to measure thoron generation rate using RAD7 detector. ATOMKI Annual Report, 89

  5. Sumesh CG, Kumar AV, Tripathi RM, Nair RN, Puranik VD (2013) Impact of flow rate on sensitivity of semiconductor type thoron monitor. Radiat Meas 59:241–244

    Article  CAS  Google Scholar 

  6. Ujić P, Čeliković I, Kandić A, Žunić Z (2008) Standardization and difficulties of the thoron exhalation rate measurements using an accumulation chamber. Radiat Meas 43(8):1396–1401

    Article  Google Scholar 

  7. Hosoda M, Shimo M, Sugino M, Furukawa M, Fukushi M (2007) Effect of soil moisture content on radon and thoron exhalation. J Nucl Sci Technol 44(4):664–672

    Article  CAS  Google Scholar 

  8. Matko V (2003) Porosity determination by using stochastics method. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije 44(3–4):155–162

    Google Scholar 

  9. Chang CS (1988) Measuring density and porosity of grain kernels using a gas pycnometer. Cereal Chem 65(1):13–15

    Google Scholar 

  10. Toda Y, Toyoda S (1972) Application of mercury porosimetry to coal. Fuel 51(3):199–201

    Article  CAS  Google Scholar 

  11. Fredrich JT, Menéndez B, Wong TF (1995) Imaging the pore structure of geomaterials. Science 268(5208):276–279

    Article  CAS  Google Scholar 

  12. Hassan NM, Hosoda M, Ishikawa T, Sorimachi A, Sahoo SK, Tokonami S, Fukushi M (2009) Radon migration process and its influence factors; review. Jpn J Health Phys 44(2):218–231

    Article  CAS  Google Scholar 

  13. Papachristodoulou C, Ioannides K, Spathis S (2007) The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments. Health Phys 92(3):257–264

    Article  CAS  Google Scholar 

  14. Prasad G, Ishikawa T, Hosoda M, Sorimachi A, Janik M, Sahoo SK et al (2012) Estimation of radon diffusion coefficients in soil using an updated experimental system. Rev Sci Instrum 83(9):093503

    Article  Google Scholar 

  15. Andersen CE (2001) Numerical modelling of radon-222 entry into houses: an outline of techniques and results. Sci Total Environ 272(1–3):33–42

    Article  CAS  Google Scholar 

  16. Schery SD, Gaeddert DH, Wilkening MH (1984) Factors affecting exhalation of radon from a gravelly sandy loam. J Geophys Res 89(D5):7299–7309

    Article  CAS  Google Scholar 

  17. Kohl T, Medici F, Rybach L (1994) Numerical simulation of radon transport from subsurface to buildings. J Appl Geophys 31(1–4):145–152

    Article  Google Scholar 

  18. Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M (2013) Measurement and calculation of radon releases from NORM residues. IAEA Technical Reports Series No. 474

  19. Singh S, Kumar J, Singh B, Singh J (1999) Radon diffusion studies in some building materials using solid state nuclear track detectors. Radiat Meas 30(4):461–464

    Article  CAS  Google Scholar 

  20. Chauhan RP, Chakarvarti SK (2002) Radon diffusion through soil and fly ash: effect of compaction. Radiat Meas 35(2):143–146

    Article  CAS  Google Scholar 

  21. Chauhan RP, Nain M, Kant K (2008) Radon diffusion studies through some building materials: effect of grain size. Radiat Meas 43:S445–S448

    Article  CAS  Google Scholar 

  22. Johnsson G (2001) Soil radon depth dependence. Radiat Meas 34:415–418

    Article  Google Scholar 

  23. Ryzhakova NK (2014) A new method for estimating the coefficients of diffusion and emanation of radon in the soil. J Environ Radioact 135:63–66

    Article  CAS  Google Scholar 

  24. LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Soc Ind Appl Math. https://doi.org/10.1137/1.9780898717839

    Article  Google Scholar 

  25. Kaya B, Gharehbaghi A (2014) Implicit solutions of advection diffusion equation by various numerical methods. Aust J Basic Appl Sci 8(1):381–391

    Google Scholar 

  26. Chitra N, Sundar SB, Jose MT, Sivasubramanian K, Venkatraman B (2019) A simple model to simulate the diffusion pattern of radon in different soil media. J Radioanal Nucl Chem 322(2):1151–1158

    Article  CAS  Google Scholar 

  27. Petropoulos NP, Anagnostakis MJ, Simopoulos SE (2001) Building materials radon exhalation rate: ERRICCA intercomparison exercise results. Sci Total Environ 272(1–3):109–118

    Article  CAS  Google Scholar 

  28. Chen J, Rahman NM, Atiya IA (2010) Radon exhalation from building materials for decorative use. J Environ Radioact 101(4):317–322

    Article  CAS  Google Scholar 

  29. Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69(3):225–240

    Article  CAS  Google Scholar 

  30. Chitra N, Danalakshmi B, Supriya D, Vijayalakshmi I, Sundar SB, Sivasubramanian K et al (2018) Study of radon and thoron exhalation from soil samples of different grain sizes. Appl Radiat Isot 133:75–80

    Article  CAS  Google Scholar 

  31. Cosma C, Dancea F, Jurcut T, Ristoiu D (2001) Determination of 222Rn emanation fraction and diffusion coefficient in concrete using accumulation chambers and the influence of humidity and radium distribution. Appl Radiat Isot 54(3):467–473

    Article  CAS  Google Scholar 

  32. Instruction manual, True Density meter SMART PYCNO 32, Smart Instruments Co. Pvt. Ltd

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chitra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitra, N., Chandrasekaran, S., Srinivas, C.V. et al. Determination of soil porosity by a simple and novel technique of fusing thoron diffusion experiment and modeling. J Radioanal Nucl Chem 331, 2461–2468 (2022). https://doi.org/10.1007/s10967-022-08312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08312-2

Keywords

Navigation