Skip to main content
Log in

Thermal decomposition study for effective management of low level radioactive combustible solids

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Plasma pyrolysis has been proposed as a viable technology for reducing volume of low level combustible radioactive wastes. Thermal analysis (TG–EGA) was done on simulated waste under flowing argon and oxygen atmospheres to determine percentage mass loss and to identify evolved gases before proceeding with plasma-based processing. Subsequently, the wastes were treated in a resistance furnace to measure mass and volume change by simulating pyrolysis conditions. XRD was used to examine the residue obtained from the laboratory experiments. Based on these findings, engineering scale plasma pyrolysis-based incineration was studied. Results and observations are discussed in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Batandjieva B, Delcheva T, Duhovnik B (2009) Classification of radioactive waste: safety guide : IAEA General Safety Guide GSG-1. International Atomic Energy Agency, Vienna

    Google Scholar 

  2. Santana LP (2016) Management of radioactive waste: A review. In: Proceedings of the International Academy of Ecology and Environmental Sciences 6 (No.2), pp 38–43

  3. Rao KR (2000) Radioactive waste: The problem and its management. Curr Sci 81

  4. Raj K, Prasad KK, Bansal NK (2006) Radioactive waste management practices in India. Nucl Eng Des 236:914–930. https://doi.org/10.1016/j.nucengdes.2005.09.036

    Article  CAS  Google Scholar 

  5. Barnes C, Cota S, Deckers J (2006) Application of thermal technologies for processing of radioactive waste: IAEA TECDOC-1527. International Atomic Energy Agency, Vienna

    Google Scholar 

  6. Wattal PK (2013) Indian programme on radioactive waste management. Sadhana 38(5):849–857. https://doi.org/10.1007/s12046-013-0170-0

    Article  Google Scholar 

  7. Pancholi KC, Agarwal S, Solankar SK, Pol SK, Patil DN, Tomar NS, Jain S, Vincent T, Sugilal G, Kaushik CP (2018) Study on the mechanism of the waste box incineration in the conventional waste incinerator installed at RSMS, WMD, BARC. In: DAE-BRNS 7th Interdisciplinary Symposium On Materials Chemistry, Mumbai, India, 4–8 December 2018, vol B1–31. ISMC, p 156

  8. Australia E (1999) Incineration and dioxins: review of formation process. Environment and Safety services of Environment Australia Commonwealth Department of the Environment and Heritage, Canberra, Austalia

  9. Fiedler H (2003) Dioxins and furans (PCDD/PCDF). In: Fiedler H (ed) Persistent organic pollutants—the handbook of environmental chemistry vol 3.O. Springer, Cham, pp 123–201

  10. Balgaranova J (2003) Plasma chemical gasification of sewage sludge. Waste Manage Res 21(1):38–41

    Article  CAS  Google Scholar 

  11. Moustakas K, Fatta D, Malamis S, Haralambous K, Loizidou M (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123(1–3):120–126

    Article  CAS  Google Scholar 

  12. Morrin S, Lettieri P, Chapman C, Mazzei L (2012) Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manage 32(4):676–684

    Article  CAS  Google Scholar 

  13. Fabry F, Rehmet C, Rohani V, Fulcheri L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valorization 4(3):421–439

    Article  CAS  Google Scholar 

  14. Sanlisoy A, Carpinlioglu M (2017) A review on plasma gasification for solid waste disposal. Int J Hydrogen Energy 42(2):1361–1365

    Article  CAS  Google Scholar 

  15. Nema S, Ganeshprasad K (2002) Plasma pyrolysis of medical waste. Curr Sci, pp 271–278

  16. Babu B (2007) Chemical kinetics and dynamics of plasma assisted pyrolysis of assorted, non nuclear waste. In: Proceedings of One day discussion meeting on “New Research directions in the use of power beams for environmental applications (RPDM-PBEA-2007)”, Laser & Plasma Technology Division, Bhabha Atomic Research Centre (BARC), Mumbai, September, 2007.

  17. Raclavská H, Corsaro A, Hlavsová A, Juchelková D, Zajonc O (2015) The effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste. Waste Manage Res 33(3):267–274

    Article  Google Scholar 

  18. Patwardhan PR, Dalluge DL, Shanks BH, Brown RC (2011) Distinguishing primary and secondary reactions of cellulose pyrolysis. Biores Technol 102(8):5265–5269

    Article  CAS  Google Scholar 

  19. Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrol 94:17–32

    Article  Google Scholar 

  20. Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113(46):20097–20107

    Article  CAS  Google Scholar 

  21. Yousef S, Eimontas J, Striūgas N, Zakarauskas K, Praspaliauskas M, Abdelnaby MA (2020) Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallised food packaging plastics. Fuel 282:118737

  22. Sebestyén Z, Blazsó M, Jakab E, Miskolczi N, Bozi J, Czégény Z (2021) Thermo-catalytic studies on a mixture of plastic waste and biomass. J Thermal Anal Calorimetry, pp 1–12

  23. Yang B, Chen M (2020) Py–FTIR–GC/MS analysis of volatile products of automobile Shredder residue pyrolysis. Polymers 12(11):2734

    Article  CAS  Google Scholar 

  24. Gleizes A, Gonzalez J-J, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38(9):R153

    Article  CAS  Google Scholar 

  25. Park H-S, Lee B-J, Kim S-J (2005) Medical waste treatment using plasma. J Ind Eng Chem 11(3):353–360

    CAS  Google Scholar 

  26. Rani DA, Gomez E, Boccaccini A, Hao L, Deegan D, Cheeseman CR (2008) Plasma treatment of air pollution control residues. Waste Manage 28(7):1254–1262

    Article  CAS  Google Scholar 

  27. Gomez E, Rani DA, Cheeseman C, Deegan D, Wise M, Boccaccini A (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161(2–3):614–626

    Article  CAS  Google Scholar 

  28. Pan X, Yan J, Xie Z (2013) Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double arc plasma torch. J Environ Sci 25(7):1362–1367

    Article  CAS  Google Scholar 

  29. Khan BA, Cheng L, Khan AA, Ahmed H (2019) Healthcare waste management in Asian developing countries: a mini review. Waste Manage Res 37(9):863–875

    Article  Google Scholar 

  30. Wielgosiński G (2011) The reduction of dioxin emissions from the processes of heat and power generation. J Air Waste Manag Assoc 61(5):511–526. https://doi.org/10.3155/1047-3289.61.5.511

    Article  CAS  PubMed  Google Scholar 

  31. Prado ES, Miranda FS, de Araujo LG, Petraconi G, Baldan MR (2020) Thermal plasma technology for radioactive waste treatment: a review. J Radioanal Nuclear Chem, pp 1–12

  32. Tzeng C-C, Kuo Y-Y, Huang T-F, Lin D-L, Yu Y-J (1998) Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J Hazard Mater 58(1–3):207–220

    Article  CAS  Google Scholar 

  33. Nakashima M, Fukui T, Nakashio N, Isobe M, Ohtake A, Wakui T, Hirabayashi T (2002) Characterization of solidified products yielded by plasma melting treatment of simulated non-metallic radioactive wastes. J Nucl Sci Technol 39(6):687–694

    Article  CAS  Google Scholar 

  34. Min B-Y, Kang Y, Song P-S, Choi W-K, Jung C-H, Oh W-Z (2007) Study on the vitrification of mixed radioactive waste by plasma arc melting. J Ind Eng Chem 13(1):57–64

    CAS  Google Scholar 

  35. Mosse A, Savchin V, Shilov V (2008) Testing and calculating a two-chamber plasma furnace for processing of radioactive wastes. J Eng Phys Thermophys 81(3):598–606

    Article  CAS  Google Scholar 

  36. Deckers J (2011) Incineration and plasma processes and technology for treatment and conditioning of radioactive waste. In: Handbook of Advanced Radioactive Waste Conditioning Technologies. Elsevier, Amsterdam, pp 43–66

  37. Vorona N, Gavrikov A, Samokhin A, Smirnov V, Khomyakov YS (2015) On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods. Phys At Nucl 78(14):1624–1630

    Article  CAS  Google Scholar 

  38. Prado ES, Miranda FS, Petraconi G, Potiens Jr AJ (2020) Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes. Radiation Phys Chem 168:108625

  39. Yasui S, Adachi K, Amakawa T (1997) Vaporization behavior of Cs in plasma melting of simulated low level miscellaneous solid wastes. Jpn J Appl Phys 36(9R):5741

    Article  CAS  Google Scholar 

  40. Yasui S, Amakawa T (2003) Vaporization rate of cesium from molten slag in a plasma melting furnace for the treatment of simulated low-level radioactive wastes. Nucl Technol 141(2):167–176

    Article  CAS  Google Scholar 

  41. Ghiloufi I (2009) Simulation of radioelement volatility during the vitrification of radioactive wastes by arc plasma. J Hazard Mater 163(1):136–142

    Article  CAS  Google Scholar 

  42. Ghiloufi I, Amouroux J (2010) Electrolysis effects on the cesium volatility during thermal plasma vitrification of radioactive wastes. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes 14 (1–2)

  43. Prado ES, Miranda FS, Araujo LG, Petraconi G, Baldan MR, Essiptchouk A, Potiens Jr AJ (2021) Experimental study on treatment of simulated radioactive waste by thermal plasma: temporal evaluation of stable Co and Cs. Ann Nuclear Energy:108433

  44. Pancholi KC, Kumar K, Pol S, Jain S, Rakesh RR, Maniyar PD, Kaushik CP, Agarwal K (2019) Challenges and innovations in management and disposal of radioactive solid wastes. In: International seminar on Innovations and Challenges in Waste Management and Disposal, Mumbai, India, 11–12 Jan 2019. ICRWMD 2019, pp 53–54

  45. Pancholi KC, Kaushik CP, Suprabha SA, Solankar S, Bhandari S, Mishra S, Tomar N, Ghorui S, Bhardwaj R, Kandaswamy E (2020) Plasma pyrolysis and incineration for low level radioactive solid wastes. BARC Newslett 372:6

    Google Scholar 

  46. Pancholi KC, Singh PJ, Bhattacharyya K, Tiwari M, Sahu SK, Vincent T, Udupa DV, Kaushik CP (2021) Elemental analysis of residual ash generated during plasma incineration of cellulosic, rubber and plastic waste. Waste Manage Res, 0734242X211038201

  47. Gerassimidou S, Velis CA, Williams PT, Komilis D (2020) Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: a review. Waste Manage Res 38(9):942–965

    Article  CAS  Google Scholar 

  48. Tihay V, Boulnois C, Gillard P (2011) Influence of oxygen concentration on the kinetics of cellulose wadding degradation. Thermochim Acta 525(1–2):16–24

    Article  CAS  Google Scholar 

  49. Miranda R, Pakdel H, Roy C, Vasile C (2001) Vacuum pyrolysis of commingled plastics containing PVC II. Product Anal Polymer Degrad Stability 73(1):47–67

    Article  CAS  Google Scholar 

  50. Bakker R, Elbersen HW (2005) Managing ash content and quality in herbaceous biomass: an analysis from plant to product. In: 14th European Biomass Conference & Eschibtion-Biomass Energy, Industry and Climate Protection Paris, France, 17–21 October 2005. Published by: ETA, Florenz, Italy. EUBCE 2005, pp 210–2113

  51. Chandrasekaran SR, Hopke PK, Rector L, Allen G, Lin L (2012) Chemical composition of wood chips and wood pellets. Energy Fuels 26(8):4932–4937

    Article  CAS  Google Scholar 

  52. Strohmeier BR, Piasecki JD, Plasencia A (2012) XPS surface characterization of disposable laboratory gloves and the transfer of glove components to other surfaces. Spectroscopy 27(7):36

    CAS  Google Scholar 

  53. Chen C, Luo J, Qin W, Tong Z (2014) Elemental analysis, chemical composition, cellulose crystallinity, and FT-IR spectra of Toona sinensis wood. Monatshefte für Chemie-Chemical Monthly 145(1):175–185

    Article  CAS  Google Scholar 

  54. Dzurenda L, Pňakovič Ľ (2016) Analysis of the inorganic matter in wood and bark proceeding from the energetic woodchips of the plantation grown tree species Robinia pseudoacacia via the AES-ICP. Key Eng Mater 688:218–225. https://doi.org/10.4028/www.scientific.net/KEM.688.218

    Article  Google Scholar 

  55. Nasrullah M, Vainikka P, Hannula J, Hurme M, Oinas P (2016) Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste. Waste Manage Res 34(1):38–46

    Article  CAS  Google Scholar 

  56. Garçon M, Sauzeat L, Carlson RW, Shirey SB, Simon M, Balter V, Boyet M (2017) Nitrile, latex, neoprene and vinyl gloves: a primary source of contamination for trace element and Zn isotopic analyses in geological and biological samples. Geostand Geoanal Res 41(3):367–380

    Article  Google Scholar 

  57. Yaseen D, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16(2):1193–1226

    Article  CAS  Google Scholar 

  58. Boettner EA, Ball GL, Weiss B (1973) Combustion products from the incineration of plastics. US Environmental Protection Agency, National Environmental Research Center

  59. Haydary J, Koreňová Z, Jelemenský Ľ, Markoš J (2008) Thermal decomposition of waste polymers. Thermophysics 2008:62

    Google Scholar 

  60. Aboulkas A, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Conv Manage 51(7):1363–1369

  61. Jin W, Singh K, Zondlo J (2013) Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3(1):12–32

    Article  Google Scholar 

  62. Rantuch P, Chrebet T (2014) Thermal decomposition of cellulose insulation. Cellulose Chem Technol 48(5–6):461–467

    CAS  Google Scholar 

Download references

Acknowledgements

Authors appreciate with gratitude the encouragement they received from Dr G. Sugilal, Dr D. V. Udupa and Dr. A. K. Tyagi during the technical research. Discussion and inputs from Dr. Acharya, Dr. A. K. Mishra, Dr. Raman K Mishra during the research work; Dr K. Bhattacharya, Dr A. S. Pente during exhaust flue gas sample analysis and contribution of members of plasma system operation team during the engineering sclae experimental work are deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keyur C. Pancholi or R. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pancholi, K.C., Mishra, R., Kolay, S. et al. Thermal decomposition study for effective management of low level radioactive combustible solids. J Radioanal Nucl Chem 331, 1309–1322 (2022). https://doi.org/10.1007/s10967-022-08210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08210-7

Keywords

Navigation