Skip to main content
Log in

Complex formation of light and heavy lanthanides with DGA and DOODA, and its application to mutual separation in DGA–DOODA extraction system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We studied the stepwise formation constants (β) of water-soluble diglycolamide (DGA) and dioxaoctanediamide (DOODA) for the mutual separation of Ln in a solvent extraction system. TODGA (N,N,Nʹ,Nʹ-tetraoctyl-diglycolamide) and DOODA(C8) (N,N,Nʹ,Nʹ-tetraoctyl-dioxaoctanediamide) exhibit opposite behaviors in extracting both light and heavy Ln through Ln-patterns. Metal complexes of two- and three-folding with water-soluble DOODA and DGA, respectively, were found, and each β value was calculated using distribution ratios. Taking β, their distribution ratio, D, and separation factor, SF, values into consideration, the suitable separation conditions (aqueous phase: 30 mM DOODA(C2) in 1 M HNO3; organic phase: 0.1 M TODGA in n-dodecane) of multistage extraction (10 × 10 extraction using aqueous and organic phases, including one sample solution) were determined. In this study, La, Pr, and Nd were mainly present in the aqueous phase, whereas Sm–Dy existed in the organic phase. Although these two groups can be easily separated into two phases, the resolution, Rs, values provide for little mutual separation between La–Nd and Sm–Dy under the present conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nishihira K, Nakayama S, Morita Y, Oigawa H, Iwasaki T (2008) Impact of partitioning and transmutation on LWR high-level waste disposal. J Nucl Sci Technol 45(1):84–97

    Article  Google Scholar 

  2. Naito K, Matsui T, Tanaka Y (1986) Recovery of noble metals from insoluble residue of spent fuel. J Nucl Sci Technol 23(6):540–549

    Article  CAS  Google Scholar 

  3. Manohar S, Sharna J, Shah B, Wattal P (2007) Process development for bulk separation of trivalent actinides and lanthanides from radioactive high-level liquid waste. Nucl Sci Eng 156:96–102

    Article  CAS  Google Scholar 

  4. Jose J, Prathibha T, Karthikeyan N, Venkatesan K, Sriram S, Seshadri H, Venkatachalapathy B, Ravichandram C (2020) Studies on the separation of Am(III) from trivalent lanthanides in high-level waste solution using modifier-free solvents and aqueous soluble bis-1,2,4-triazines. J Radioanal Nucl Chem 326:1819–1829

    Article  CAS  Google Scholar 

  5. Prathibha T, Kumaresan R, Nayak P, Venkatesan K, Subramanian G, Rajeswari S, Kalaiyarasu T, Karunakaran R, Antony M (2017) Modifier-free separation of trivalent actinides and lanthanides from fast reactor simulated high-level waste using N,N-di-octyl-2-hybroxyacetamide. J Radioanal Nucl Chem 314:2365–2375

    Article  CAS  Google Scholar 

  6. Peng L, Yang Q, Zhang H, Xu G, Zhang M, Wang J (2008) Rare earth permanent magnets Sm2(Co, Fe, Cu, Zr)17 for high temperature applications. J Rare Earth 26(3):378–382

    Article  Google Scholar 

  7. Rao R, Devine D (2000) RE-activated lanthanide phosphate phosphors for PDP applications. J Lumin 87–89:1260–1263

    Article  Google Scholar 

  8. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374

    Article  CAS  Google Scholar 

  9. Du X, Graedel T (2011) Global In-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45:4096–4101

    Article  CAS  Google Scholar 

  10. Topp N (1965) Chemistry of the rare-earth elements. Elsevior, New York

    Google Scholar 

  11. Siekierski S, Fidelis I (1960) Separation of some rare earths by reversed-phase partition chromatography. J Chromatogr A 4:60–64

    Article  Google Scholar 

  12. Winchester J (1963) Rare earth choromatography using Bis-(2-ethylhexyl) orthophosphoric acid. J Chromatogr A 10:502–506

    Article  CAS  Google Scholar 

  13. Starý J (1966) Separation of transplutonium elements. Talanta 13:421–437

    Article  Google Scholar 

  14. Tkac P, Vandegrift G, Lumetta G, Gelis A (2012) Study of the interaction between HDEHP and CMPO and its effect on the extraction of selected lanthanides. Ind Eng Chem Res 51:10433–10444

    Article  CAS  Google Scholar 

  15. Tachimori S, Sato A, Nakamura H (1979) Separation of transplutonium and rare-earth elements by extraction with di-isodecyl phosphoric acid from DTPA solution. J Nucl Sci Technol 16:434–440

    Article  CAS  Google Scholar 

  16. Matsubayashi I, Ishiwata E, Shionoya T, Hasegawa Y (2004) Synergistic extraction of lanthanoids(III) with 2-thenoyltrifluoroacetone and benzoic acid: thermodynamic parameters in the complexation in organic phases and the hydration. Talanta 63:625–633

    Article  CAS  Google Scholar 

  17. Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane system. Solvent Extr Ion Exch 19(1):91–103

    Article  CAS  Google Scholar 

  18. Sasaki Y, Tachimori S (2002) Extraction of actinides(III), (IV), (V), (VI), and lanthanides(III) by structurally tailored diamides. Solvent Extr Ion Exch 20(1):21–34

    Article  CAS  Google Scholar 

  19. Sasaki Y, Sugo Y, Suzuki S, Kimura T (2005) A method for the determination of extraction capacity and its application to N,N,Nʹ,Nʹ-tetraalkylderivatives of diglycolamide-monoamide/n-dodecane media. Anal Chim Acta 543:31–37

    Article  CAS  Google Scholar 

  20. Sasaki Y, Morita Y, Kitatsuji Y, Kimura T (2010) Extraction behavior of actinides and metal ions by the promising extractant, N,N,N′,N′-tetraoctyl-3,6-dioxaoctanediamide (DOODA). Solvent Extr Ion Exch 28:335–349

    Article  CAS  Google Scholar 

  21. Narita H, Yaita T, Tachimori S (2004) Extraction of lanthanides with N,N′-dimethyl-N,N′-diphenyl-malonamide and 3,6-dioxaoctanediamide. Solvent Extr Ion Exch 22(2):135–145

    Article  CAS  Google Scholar 

  22. Nakamura S, Suzuki N (1988) Synergic extraction of lanthanide(III) ions with 2-thenoyltrifluoroacetone in the presence of 2,2ʹ-bipyridine or pyridine. Polyhedron 7(2):155–159

    Article  CAS  Google Scholar 

  23. Imura H, Ebisawa M, Kato M, Ohashi K (2006) Novel synergism by complex ligands in solvent extraction of rare earth metals(III) with β-diketones. J Alloys Compd 408–412:952–957

    Article  Google Scholar 

  24. Craig L, Post O (1949) Apparatus for counter current distribution. Anal Chem 21(4):500–504

    Article  CAS  Google Scholar 

  25. Craig L, Hausmann W, Ahrens E, Harfenist E (1951) Automatic countercurrent distribution equipment. Anal Chem 23(9):1236–1244

    Article  CAS  Google Scholar 

  26. Sasaki Y, Matsumiya M, Tsuchida Y (2020) Basic research on batchwise multi-stage extractions using TODGA for Dy/Nd separation. Anal Sci 36:1303–1309

    Article  CAS  Google Scholar 

  27. Sasaki Y, Morita K, Matsumiya M, Ono R, Shiroishi H (2021) Fundamental study on multistage extraction using TDdDGA for separation of lanthanides present in Nd magnets. JOM 73:1037–1043

    Article  CAS  Google Scholar 

  28. Matsutani T, Sasaki Y, Katsuta S (2021) separation of light and middle lanthanides using multistage extraction with diglycolamide extractant. Anal Sci 37:1603–1609

    Article  CAS  Google Scholar 

  29. Jastrebova J, Witthoft C, Grahn A, Svensson U, Jagerstad M (2003) HPLC determination of folates in raw and processed beetroots. Food Chem 80:579–588

    Article  CAS  Google Scholar 

  30. Li M, Huang J, Li T (2008) Enantiomeric separation of alcohols and amines on a proline chiral stationary phase by gas chromatography. J Chromatogr A 1191:199–204

    Article  CAS  Google Scholar 

  31. Sasaki Y, Kitatsuji Y, Tsubata Y, Sugo Y, Morita Y (2011) Separation of Am, Cm and Ln by the solvent extraction with hydrophilic and lipophilic organic ligands. Solvent Extr Res Dev Jpn 18:93–101

    Article  CAS  Google Scholar 

  32. Sasaki Y, Sugo Y, Kitatsuji Y, Kirishima A, Kimura T, Choppin G (2007) Complexation of various metals by water-soluble diglycolamide (DGA). Anal Sci 23:727–731

    Article  CAS  Google Scholar 

  33. Murakami S, Matsumiya M, Sasaki Y, Suzuki S, Hisamatsu S, Takao K (2017) Investigation into coordination states of diglycolamide and dioxaoctanediamide complexes with lanthanide elements using spectroscopic methods. Solvent Extr Ion Exch 34:233–250

    Article  Google Scholar 

  34. Wei M, He Q, Feng X, Chen J (2012) Physical properties of N, N, Nʹ, Nʹ-tetramethyl diglycolamide and thermodynamic studies of its complexation with zirconium, lanthanides and actinides. J Radioanal Nucl Chem 293:689–697

    Article  CAS  Google Scholar 

  35. Klaβ L, Wilden A, Kreft F, Wagner C, Geist A, Panak P, Koniecko I, Narbutt J, Modolo G (2019) Evaluation of the hydrophilic complxant N,N,Nʹ,Nʹ-tetraethyldiglycolamide (TEDGA) and its methyl-substituted analogues in the selective Am(III) separation. Solvent Extr Ion Exch 37:297–312

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. M. Watanabe of the Research Group for Radiochemistry at JAEA for managing the laboratory and ensuring safety. We also thank Mr. R. Ono of Tokyo Institute of Technology, Y. Tsuchida at Yokohama National University, and T. Matsutani at Chiba University for useful information on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Matsumiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomizu, D., Sasaki, Y., Kaneko, M. et al. Complex formation of light and heavy lanthanides with DGA and DOODA, and its application to mutual separation in DGA–DOODA extraction system. J Radioanal Nucl Chem 331, 1483–1493 (2022). https://doi.org/10.1007/s10967-022-08204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08204-5

Keywords

Navigation