Skip to main content
Log in

Uranium removal from a radioactive contaminated soil by defined bioleaching bacteria

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to assess the feasibility of uranium removal technology from radioactive contaminated soil by combined bioleaching bacterial consortia, mixed bacterial culture and pure culture of four strains (Acidithiobacillus ferrooxidans ATCC 23,270, Leptosirillum ferripHilum YSK, Acidithiobacills thiooxidans A01, Acidithiobacillus ferrivorans YL15) were comparatively investigated on uranium removal from a radioactive contaminated soil. The results showed that the mixed bioleaching bacterial consortium exerted good adaptability to the surroundings, showing high biological activity and uranium removal capacity. In the whole cleaning process of uranium contaminated soil, the mixed bioleaching bacterial consortium showed complementary advantages, and the synergistic effect improved the uranium removal efficiency, and the maximum uranium removal of the combined bacteria was achieved to 85.81%. Additionally, the linear fitting analysis showed that the uranium removal was positively related to redox potential and negatively related to pH. Lastly, the soil residue after cleaning was detected by SEM/EDS. The results showed that the liberation degree of uranium-contaminated soil increased significantly after bacterial oxidation, which was conducive to the contact of bacteria and Fe3+ to soil particles, thus improving the uranium removal rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Keatley AC, Dunne JA, Martin TL, Nita DC, Andersen MB, Scott TB, Richards DA, Awbery RP (2021) Uranium isotope variation within vein-type uranium ore deposits. Appl Geochem 131:104977

    Article  CAS  Google Scholar 

  2. Melo D, Burkart W (2011) Uranium: environmental pollution and health effects. Encycl Environ Health 36:526–533

    Article  Google Scholar 

  3. Corcho Alvarado JA, Balsiger B, Röllin S, Jakob A, Burger M (2014) Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of Mailuu Suu (Kyrgyzstan). J Environ Radioact 138:1–10

    Article  CAS  Google Scholar 

  4. Wang R, Mai J, Guan Y, Liu Z (2020) Radionuclides in the environment around the uranium mines in Guangxi, China. Appl Radiat Isot 159:109098

    Article  CAS  Google Scholar 

  5. Desmarais M, Pirade F, Zhang J, Rene ER (2016) Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. Bioresour Technol Rep 11:100526

    Article  Google Scholar 

  6. Umanskii AB, Klyushnikov AM (2013) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. J Radioanal Nucl Chem 295:151–156

    Article  CAS  Google Scholar 

  7. Chen P, Ma Y, Kang M, Shang C, Yang Y (2020) The redox behavior of uranium on Beishan granite: effect of Fe2+ and Fe3+ content. J Environ Radioact 217:106208

    Article  CAS  Google Scholar 

  8. Abhilash, Pandey BD (2015) Microbial Extraction of Uranium from Ores. In: Abhilash (ed) Microbiology for Minerals, Metals, Materials and the Environment. CRC Press, Los Angeles

  9. Pal S, Pradhan D, Das T, Sukla LB, Chaudhury GR (2010) Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian J Microbiol 50:70–75

    Article  CAS  Google Scholar 

  10. Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  11. Sha Y, Hu N, Wang Y, Chen S, Zou C, Dai Z, Zhang H, Ding D (2019) Enhanced phytoremediation of uranium contaminated soil by artificially constructed plant community plots. J Environ Radioact 208–209:106036

    Article  CAS  Google Scholar 

  12. Mahadevan GD, Feng Z (2017) A concise review on microbial remediation cells (MRCs) in soil and groundwater radionuclides remediation. J Radioanal Nucl Chem 314:1477–1485

    Article  Google Scholar 

  13. Kour G, Kothari R, Singh HM, Pathania D, Dhar S (2021) Microbial leaching for valuable metals harvesting: versatility for the bioeconomy. Environ Sustain 4:215–229

    Article  CAS  Google Scholar 

  14. Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314:251–258

    Article  CAS  Google Scholar 

  15. Liao X, Ye M, Li S, Liang J, Zhou S, Fang X, Gan Q, Sun S (2021) Simultaneous recovery of valuable metal ions and tailings toxicity reduction using a mixed culture bioleaching process. J Clean Prod 316:128319

    Article  CAS  Google Scholar 

  16. Mkandawire M (2013) Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines. Environ Sci Pollut Res 20:7740–7767

    Article  CAS  Google Scholar 

  17. Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z (2021) Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review. J Hazard Mater 413:125319

    Article  CAS  Google Scholar 

  18. Xia L, Liu J, Xiao L, Zeng J, Li B, Geng M, Qiu G (2008) Single and cooperative bioleaching of sphalerite by two kinds of bacteria—Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans. Trans Nonferrous Met Soc China 18:190–195

    Article  CAS  Google Scholar 

  19. Li Q, Ding D, Sun J, Wang Q, Hu E, Shi W, Ma L, Guo X, Liu X (2015) Community dynamics and function variation of a defined mixed bioleaching acidophilic bacterial consortium in the presence of fluoride. Ann Microbiol 65:121–128

    Article  CAS  Google Scholar 

  20. Zhu N, Xiang Y, Zhang T, Wu P, Dang Z, Li P, Wu J (2011) Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidopHilic bacteria. J Hazard Mater 192:614–619

    Article  CAS  Google Scholar 

  21. Akcil A, Ciftci H, Deveci H (2007) Role and contribution of pure and mixed cultures of mesopHiles in bioleaching of a pyritic chalcopyrite concentrate. Mine Eng 20:310–318

    Article  CAS  Google Scholar 

  22. Sani RK, Peyton BM, Dohnalkova A, Amonette JE (2005) Reoxidation of reduced uranium with iron(III) (hydr) oxides under sulfate-reducing conditions. Environ Sci Technol 39:2059–2066

    Article  CAS  Google Scholar 

  23. Vázquez-Campos X, Kinsela AS, Collins RN, Neilan BA, Waite TD (2017) Uranium extraction from a low-grade, stockpiled, non-sulfidic ore: Impact of added iron and the native microbial consortia. Hydrometallurgy 167:81–91

    Article  Google Scholar 

  24. Li Q, Sun J, Ding D, Wang Q, Shi W, Hu E, Wang X, Jiang X (2017) Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers. J Radioanal Nucl Chem 314:1939–1946

    Article  CAS  Google Scholar 

  25. Wang X, Sun Z, Liu Y, Min X, Guo Y, Li P, Zheng Z (2019) Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresour Technol 281:66–71

    Article  CAS  Google Scholar 

  26. Kolhe N, Zinjarde S, Acharya C (2020) Impact of uranium exposure on marine yeast, Yarrowia lipolytica: insights into the yeast strategies to withstand uranium stress. J Hazard Mater 381:121226

    Article  CAS  Google Scholar 

  27. Madakkaruppan V, Pius A, Sreenivas T, Sunilkumar TS (2019) Behaviour of Si, Al, Fe and Mg during oxidative sulfuric acid leaching of low grade uranium ore: A kinetic approach. J Environ Chem Eng 7:103139

    Article  CAS  Google Scholar 

  28. You W, Peng W, Tian Z, Zheng M (2021) Uranium bioremediation with U(VI)-reducing bacteria. Sci Total Environ 798:149107

    Article  CAS  Google Scholar 

  29. Fowler TA, Holmes PR, Crundwell FK (2001) On the kinctics and mechanism of the dissolution of pyrite in the presence of Thiobxacillus ferrooxridans. Hydrometallurgy 59:257–270

    Article  CAS  Google Scholar 

  30. Tavakoli HZ, Abdollahy M, Ahmadi SJ, Darban AK (2017) Kinetics of uranium bioleaching in stirred and column reactors. Miner Eng 111:36–46

    Article  Google Scholar 

  31. Lindawati L, Mursal M, Afdhal A (2019) Determination of mineral contents in Meukek marble using XRD and SEM-EDS analysis. In: IOP conf ser: mater sci eng 506:012023

  32. Sun J, Li G, Li Q, Wang Y, Ma J, Pang C, Ma J (2020) Impacts of operational parameters on the morphological structure and uranium bioleaching performance of bio-ore pellets in one-step bioleaching by Aspergillus niger. Hydrometallurgy 195:105378

    Article  CAS  Google Scholar 

  33. Zammitc CM, Brugger J, Gordon S, Frank R (2014) In situ recovery of uranium: the microbial influence. Hydrometallurgy 150:236–244

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the National Natural Science Foundation of China (No. 51804165) and Natural Science Foundation of Hunan Province in China (No. 2018JJ3441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, Q., Yang, Y. et al. Uranium removal from a radioactive contaminated soil by defined bioleaching bacteria. J Radioanal Nucl Chem 331, 439–449 (2022). https://doi.org/10.1007/s10967-021-08077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08077-0

Keywords

Navigation