Skip to main content
Log in

Selective removal and immobilization of cesium from aqueous solution using sludge functionalized with potassium copper hexacyanoferrate: a low-cost adsorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

As a typical effective cesium ion removal method, this research presents a facile method of preparing potassium copper hexacyanoferrate on the surface of sludge created from refinery wastewater treatment (KCuHCFS). The IR, SEM–EDX, BET, and TGA were used to characterize the functionalized sludge KCuHCFS. On the adsorption process, the effects of Cs+ concentration, adsorbent dosage, γ-radiation, pH, time, and temperature were investigated. The KCuHCFS has a large surface area of 123 m2 g−1 and a mesoporous structure that is thermally and radiationally stable. Ion exchange between Cs+ and K+ is the most common mechanism for Cs+ elimination. KCuHCFS was successfully regenerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aly AIM, Hussien RA, Nassar N (2020) Radioactive dispersion in groundwater resulting from postulated accident at a proposed nuclear power plant, northwestern coast of Egypt. Groundw Sustain Dev 10:100326

    Article  Google Scholar 

  2. Wisnubroto DS, Zamroni H, Sumarbagiono R, Nurliati G (2020) Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia. Nucl Eng Technol. https://doi.org/10.1016/j.net.2020.07.005

    Article  Google Scholar 

  3. Prado ESP, Miranda FS, Petraconi G, Potiens AJ (2020) Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes. Radiat Phys Chem 168:108625

    Article  CAS  Google Scholar 

  4. Ortiz-Oliveros HB, Flores-Espinosa RM (2020) Design of a mobile dissolved air flotation system with high rate for the treatment of liquid radioactive waste. Process Saf Environ Prot 144:23–31

    Article  CAS  Google Scholar 

  5. Mezaki Y, Kato S, Nishikawa O et al (2019) Measurements of radiocesium in animals, plants and fungi in Svalbard after the Fukushima Daiichi nuclear power plant disaster. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e03051

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harada S, Yanagisawa M (2017) Evaluation of a method for removing cesium and reducing the volume of leaf litter from broad-leaved trees contaminated by the Fukushima Daiichi nuclear accident during the Great East Japan Earthquake. Chemosphere 172:516–524

    Article  CAS  PubMed  Google Scholar 

  7. Moriyama N, Nakayama C, Orui M et al (2020) Associated factors related to participation in general health checkup and survey of the effect of low-dose radiation exposure on health of residents of Fukushima Prefecture after the Fukushima Daiichi nuclear power plant accident. Prev Med Reports 20:101214

    Article  Google Scholar 

  8. Nihei N, Tanoi K, Nakanishi TM (2016) Monitoring inspection for radiocesium in agricultural, livestock, forestry and fishery products in Fukushima prefecture. J Radioanal Nucl Chem 307:2217–2220. https://doi.org/10.1007/s10967-015-4448-z

    Article  CAS  Google Scholar 

  9. Voronina AV, Noskova AY, Semenishchev VS, Gupta DK (2020) Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2020.106210

    Article  PubMed  Google Scholar 

  10. Kim M, Park J-H, Lim J-M et al (2021) Conventional and photoinduced radioactive 137Cs removal by adsorption on FeFe, CoFe, and NiFe Prussian blue analogues. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126568

    Article  PubMed  PubMed Central  Google Scholar 

  11. El-Naggar IM, Zakaria ES, Ali IM et al (2012) Chemical studies on polyaniline titanotungstate and its uses to reduction cesium from solutions and polluted milk. J Environ Radioact 112:108–117. https://doi.org/10.1016/j.jenvrad.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  12. Wan Mahmood ZU, Yii M-W, Ahmad Tugi DN et al (2019) Seawater, biota and sediment partitioning of 137Cs in the east coast of Peninsular Malaysia. J Radioanal Nucl Chem 322:2119–2128. https://doi.org/10.1007/s10967-019-06881-3

    Article  CAS  Google Scholar 

  13. Gulakov AV (2014) Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar (Sus scrofa) found on the territory with radioactive contamination. J Environ Radioact 127:171–175

    Article  CAS  PubMed  Google Scholar 

  14. Nemoto Y, Oomachi H, Saito R et al (2020) Effects of 137Cs contamination after the TEPCO Fukushima Dai-ichi Nuclear Power Station accident on food and habitat of wild boar in Fukushima Prefecture. J Environ Radioact 225:106342

    Article  CAS  PubMed  Google Scholar 

  15. Biegalski SR, Hosticka B, Mason LR (2001) Cesium-137 concentrations, trends, and sources observed in Kuwait City, Kuwait. J Radioanal Nucl Chem 248:643–649. https://doi.org/10.1023/A:1010676208657

    Article  CAS  Google Scholar 

  16. Abbasi A, Davarkhah R, Avanes A et al (2020) Development of Nanoporous Alumino-borosilicate as a Novel Matrix for the Sorption and Stable Immobilization of Cesium Ions. J Inorg Organomet Polym Mater 30:369–378. https://doi.org/10.1007/s10904-019-01195-z

    Article  CAS  Google Scholar 

  17. El-Absy MA, El-Amir MA, Mostafa M et al (2005) Separation of fission produced 106Ru and 137Cs from aged uranium targets by sequential distillation and precipitation in nitrate media. J Radioanal Nucl Chem 266:295–305. https://doi.org/10.1007/s10967-005-0907-2

    Article  CAS  Google Scholar 

  18. Kim H, Seon J, Yoon S et al (2020) Roll-to-roll production of a cellulose filter with immobilized Prussian blue for 137Cs adsorption. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104273

    Article  Google Scholar 

  19. Todd TA, Mann NR, Tranter TJ et al (2002) Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents. J Radioanal Nucl Chem 254:47–52. https://doi.org/10.1023/A:1020881212323

    Article  CAS  Google Scholar 

  20. Eun S, Hong H-J, Kim H et al (2020) Prussian blue-embedded carboxymethyl cellulose nanofibril membranes for removing radioactive cesium from aqueous solution. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.115984

    Article  PubMed  Google Scholar 

  21. Leybros A, Segond N, Grandjean A (2018) Remediation of 137Cs-contaminated concrete rubble by supercritical CO2 extraction. Chemosphere 208:838–845

    Article  CAS  PubMed  Google Scholar 

  22. Balarama Krishna MV, Rao SV, Arunachalam J et al (2004) Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent. Sep Purif Technol 38:149–161

    Article  CAS  Google Scholar 

  23. Johan E, Yamada T, Munthali MW et al (2015) Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environ Sci 28:52–56

    Article  CAS  Google Scholar 

  24. Zhao X, Meng Q, Chen G et al (2018) An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution. Chem Eng J 352:133–142

    Article  CAS  Google Scholar 

  25. Ding D, Zhang Z, Chen R, Cai T (2017) Selective removal of cesium by ammonium molybdophosphate – polyacrylonitrile bead and membrane. J Hazard Mater 324:753–761

    Article  CAS  PubMed  Google Scholar 

  26. Yang H-M, Park CW, Kim I, Yoon I-H (2020) Hollow flower-like titanium ferrocyanide structure for the highly efficient removal of radioactive cesium from water. Chem Eng J 392:123713

    Article  CAS  Google Scholar 

  27. Wang J, Zhuang S, Liu Y (2018) Metal hexacyanoferrates-based adsorbents for cesium removal. Coord Chem Rev 374:430–438

    Article  CAS  Google Scholar 

  28. Xia T, Yin L, Xie Y, Ji Y (2020) Efficiently remove of Cs(I) by metals hexacyanoferrate modified magnetic Fe3O4-chitosan nanoparticles. Chem Phys Lett 746:137293

    Article  CAS  Google Scholar 

  29. Kim Y, Eom HH, Kim YK et al (2020) Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126262

    Article  PubMed  Google Scholar 

  30. Yang S, Liao S, Ren X et al (2020) Highly selective enrichment of radioactive cesium from solution by using zinc hexacyanoferrate(III)-functionalized magnetic bentonite. J Coll Interface Sci 580:171–179

    Article  CAS  Google Scholar 

  31. Kim Y, Eom HH, Kim D et al (2021) Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117745

    Article  Google Scholar 

  32. Cabaud C, Barré Y, De Windt L, Grandjean A (2019) Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.115796

    Article  Google Scholar 

  33. Vanderheyden SRH, Yperman J, Carleer R, Schreurs S (2018) Enhanced cesium removal from real matrices by nickel-hexacyanoferrate modified activated carbons. Chemosphere 202:569–575

    Article  CAS  PubMed  Google Scholar 

  34. Soliman AM, Murad AA, El SES et al (2017) Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: equilibrium, thermodynamic and kinetics studies. J Water Process Eng 19:267–276

    Article  Google Scholar 

  35. Albayari M, Nazal MK, Khalili FI et al (2021) Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water. J Radioanal Nucl Chem 328:669–678. https://doi.org/10.1007/s10967-021-07667-2

    Article  CAS  Google Scholar 

  36. Regkouzas P, Diamadopoulos E (2019) Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere 224:840–851

    Article  CAS  PubMed  Google Scholar 

  37. Wang XL, Li Y, Huang J et al (2019) Efficiency and mechanism of sorption of low concentration uranium in water by powdery aerobic activated sludge. Ecotoxicol Environ Saf 180:483–490

    Article  CAS  PubMed  Google Scholar 

  38. Zakaria ES, Ali IM, Khalil M, et al (2021) Adsorptive characteristics of some metal ions on chitosan/zirconium phosphate/silica decorated graphene oxide. J Radioanal Nucl Chem 329:191–211

  39. Khalil M, Aly MI, Shehata MM (2021) Preparation and evaluation of poly-o-toluidine sulfochromate as a promising nanocomposite for selective adsorption of copper. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1951720

  40. Ali IM, Khalil M, Madbouly HA, Soliman AM (2021) Efficient lanthanides adsorption using magnetic hydroxyapatite incorporated cobalt. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1912332

  41. Pishnamazi M, Ghasemi S, Khosravi A et al (2021) Removal of Cu (ll) from industrial wastewater using poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid)/graphene oxide/sodium alginate hydrogel: Isotherm, kinetics, and optimization study. J Water Process Eng 42:102144

    Article  Google Scholar 

  42. Ali IM, Zakaria ES, Khalil M et al (2020) Efficient enrichment of Eu3+, Tb3+, La3+ and Sm3+ on a double core shell nano composite based silica. J Inorg Organomet Polym Mater 30:1537–1552. https://doi.org/10.1007/s10904-019-01303-z

    Article  CAS  Google Scholar 

  43. Zakaria ES, Ali IM, Khalil M et al (2016) Synthesis, characterization and isotherm studies of new composite sorbents. Bull Mater Sci 39:1709–1724. https://doi.org/10.1007/s12034-016-1321-9

    Article  CAS  Google Scholar 

  44. Mink J, Stirling A, Ojwang DO et al (2019) Vibrational properties and bonding analysis of copper hexacyanoferrate complexes in solid state. Appl Spectrosc Rev 54:369–424

    Article  CAS  Google Scholar 

  45. Loos-Neskovic C, Ayrault S, Badillo V et al (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177:1817–1828

    Article  CAS  Google Scholar 

  46. Åkerblom I, Ojwang D, Grins J, Svensson G (2017) A thermogravimetric study of thermal dehydration of copper hexacyanoferrate by means of model-free kinetic analysis. J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6280-x

    Article  Google Scholar 

  47. You Z, Zhang N, Guan Q, et al (2020) High sorption capacity of U (VI) by COF-Based material doping hydroxyapatite microspheres: kinetic, equilibrium and mechanism investigation. J Inorg Organomet Polym Mater 30:1966–1979

  48. Nilchi A, Saberi R, Moradi M et al (2011) Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution. Chem Eng J 172:572–580

    Article  CAS  Google Scholar 

  49. Vincent T, Vincent C, Barre Y et al (2014) Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J Mater Chem A 2:10007–10021

    Article  CAS  Google Scholar 

  50. Yang H, Li H, Zhai J, Yu H (2015) In situ growth of Prussian blue nanocrystal within Fe3+ crosslinking PAA resin for radiocesium highly efficient and rapid separation from water. Chem Eng J 277:40–47

    Article  CAS  Google Scholar 

  51. Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506

    Article  CAS  Google Scholar 

  52. Zhang H, Zhao X, Wei J, Li F (2015) Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem Eng J 275:262–270

    Article  CAS  Google Scholar 

  53. Zhang B, Wu Y, Fan Y (2019) Synthesis of novel magnetic NiFe2O4 nanocomposite grafted chitosan and the adsorption mechanism of Cr(VI). J Inorg Organomet Polym Mater 29:290–301. https://doi.org/10.1007/s10904-018-0987-4

    Article  CAS  Google Scholar 

  54. Khalil M, Mohamed TY, El-tantawy A (2017) Kinetic evaluations for the sorption process of lanthanide ions with poly-O-toluidine Zr(IV) Tungstophosphate. J Inorg Organomet Polym Mater 27:757–769. https://doi.org/10.1007/s10904-017-0519-7

    Article  CAS  Google Scholar 

  55. El-Naggar IM, Zakaria ES, Ali IM et al (2012) Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate. Arab J Chem 5:109–119. https://doi.org/10.1016/j.arabjc.2010.09.028

    Article  CAS  Google Scholar 

  56. Kim Y, Kim YK, Kim S et al (2017) Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem Eng J 313:1042–1050

    Article  CAS  Google Scholar 

  57. Naeimi S, Faghihian H (2017) Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep Purif Technol 175:255–265

    Article  CAS  Google Scholar 

  58. Khalil M, El-Aryan YF, Ali IM (2016) Hydrothermal synthesis of Mn–Fe nano oxides and their composite for removal of Zn2+, Ni2+ and Co2+ from simulated radioactive waste. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-015-0318-y

    Article  Google Scholar 

  59. Hu Y, Pan C, Zheng X et al (2021) Prediction and optimization of adsorption properties for Cs+ on NiSiO@ NiAlFe LDHs hollow spheres from aqueous solution: kinetics, isotherms, and BBD model. J Hazard Mater 401:123374

    Article  CAS  PubMed  Google Scholar 

  60. Ding D, Zhao Y, Yang S et al (2013) Adsorption of cesium from aqueous solution using agricultural residue–walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47:2563–2571

    Article  CAS  PubMed  Google Scholar 

  61. Delchet C, Tokarev A, Dumail X et al (2012) Extraction of radioactive cesium using innovative functionalized porous materials. Rsc Adv 2:5707–5716

    Article  CAS  Google Scholar 

  62. Sangvanich T, Sukwarotwat V, Wiacek RJ et al (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yavari R, Huang Y, Ahmadi S (2011) Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 287:393–401

    Article  CAS  Google Scholar 

  64. Caccin M, Giacobbo F, Da Ros M et al (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18

    Article  CAS  Google Scholar 

  65. Ararem A, Bouras O, Bouzidi A (2013) Batch and continuous fixed-bed column adsorption of Cs+ and Sr 2+ onto montmorillonite–iron oxide composite: comparative and competitive study. J Radioanal Nucl Chem 298:537–545

    Article  CAS  Google Scholar 

  66. Nguyen MN, Yaqub M, Kim S, Lee W (2021) Optimization of cesium adsorption by Prussian blue using experiments and gene expression modeling. J Water Process Eng 41:102084

    Article  Google Scholar 

  67. Park Y, Shin WS, Choi S-J (2013) Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): an efficient ion exchanger for cesium ion. Chem Eng J 220:204–213

    Article  CAS  Google Scholar 

  68. Khalil M, El-Aryan YF, Abdel-Galil EA (2015) Equilibrium studies on the removal of cadmium ion on amberlite IR-120 sorbent. Coll J 77:745–753. https://doi.org/10.1134/S1061933X15060113

    Article  CAS  Google Scholar 

  69. El-Bahy SM, Fadel DA, El-Bahy ZM, Metwally AM (2018) Rapid and highly efficient cesium removal by newly synthesized carbomer encapsulated potassium copper hexacyanoferrate composite. J Environ Chem Eng 6:1875–1885

    Article  CAS  Google Scholar 

  70. Nilchi A, Malek B, Maragheh MG, Khanchi A (2003) Investigation of the resistance of the potassium copper nickel hexacyanoferrate (II) ion exchanger against gamma irradiation. Radiat Phys Chem 68:837–842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the staff members of colleagues of Science United Arab Emirates University and Nuclear Fuel Technology Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority for their cooperation, and useful help offered during this work. Also, the authors extend their thanks to Prof. Muftah El-Naas for supplying the sludge and Prof. Ismail M. Ali for his valuable comments and revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy Khalil.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, A.M., Madbouly, H.A., El Sheikh, E.S. et al. Selective removal and immobilization of cesium from aqueous solution using sludge functionalized with potassium copper hexacyanoferrate: a low-cost adsorbent. J Radioanal Nucl Chem 330, 207–223 (2021). https://doi.org/10.1007/s10967-021-07964-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07964-w

Keywords

Navigation