Skip to main content
Log in

Study of soil-gas and indoor radon concentration in a test village at Tehri Garhwal, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radon and progeny concentrations in indoor air, radon exhalation rates and radon concentrations in soil–gas were measured at various locations in a test village at Tehri Garhwal, India. The aim of this study is to understand inter-correlations of radon species in different media. Indoor radon and its progeny concentrations were observed higher in winter and lower in summer season. The annual average values of radon and thoron equilibrium factors were calculated to be 0.33 and 0.07, respectively. Radon and its progeny were found to contribute 66% of the total annual inhalation dose. Soil-gas and indoor radon concentrations, and radon exhalation rates were found to be positively correlated with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Prasad M, Rawat M, Dangwal A, Prasad G, Mishra R, Ramola RC (2016) Study of radiation exposure due to radon, thoron and progeny in the indoor environment of Yamuna and Tons valleys of Garhwal Himalaya. Radiat Prot Dosim 171(2):187–191

    Article  CAS  Google Scholar 

  2. Buttafuoco G, Tallarico A, Falcone G (2007) Mapping Soil gas radon concentration: a comparative study of geostatistical methods. Environ Monit Assess 131(1–3):135–151

    Article  CAS  Google Scholar 

  3. Prasad M, Rawat M, Dangwal A, Kandari T, Gusain GS, Mishra R, Ramola RC (2016) Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya. J Environ Radioact 151:238–243

    Article  CAS  Google Scholar 

  4. Kandari T, Aswal S, Prasad M, Bourai AA, Ramola RC (2016) Estimation of annual effective dose from radon concentration along Main Boundary Thrust (MBT) in Garhwal Himalaya. J Radiat Res Appl Sci 9(3):228–233

    Article  CAS  Google Scholar 

  5. Jantsikene A, Kiisk M, Suursoo S, Koch R, Lumiste L (2014) Groundwater treatment as a source of indoor radon. Appl Radiat Isot 93:70–75

    Article  CAS  Google Scholar 

  6. Pant P, Kandari T, Prasad M, Ramola RC (2016) A comparative study of diurnal variation of radon and thoron concentrations in indoor environment. Radiat Prot Dosim 2:212–216

    Article  Google Scholar 

  7. Maghraby AM, Alzimami K, Abo-Elmagd M (2014) Estimation of the residential radon levels and the population annual effective dose in dwellings of Al-Kharj, Saudi Arabia. J Radiat Res Appl Sci 7(4):577–582

    Article  Google Scholar 

  8. World Health Organization (2009) WHO Handbook on indoor radon: a public health perspective

  9. United Nations Scientific Committee on the Effect of Atomic Radiation (2008) Report of the general assembly. United Nation, New York

  10. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources, effects and risk of ionizing radiation, Report to general assembly, United Nation, New York

  11. Bourai AA, Aswal S, Dangwal A, Rawat M, Prasad M, Naithani NP, Joshi V, Ramola RC (2013) Measurements of radon flux and soil-gas radon concentration along the Main Central Thrust, Garhwal Himalaya, using SRM and RAD7 detectors. Acta Geophys 61(4):950–957

    Article  Google Scholar 

  12. Adelikhah M, Shahrokhi A, Imani M, Chalupnik S, Kovács T (2020) Radiological assessment of indoor radon and thoron concentrations and indoor radon map of dwellings in Mashhad. Iran Int J Env Res Pub He 18:141

    Article  Google Scholar 

  13. Műllerová M, Kozak K, Kovács T, Csordás A, Grzadziel D, Holý K, Mazur J, Moravcsík A, Neznal M, Neznal M, Smetanova I (2014) Preliminary results of indoor radon survey in V4 countries. Radiat Prot Dosim 160(1–3):210–213

    Article  Google Scholar 

  14. Kemski J, Klingel R, Siehl A, Valdivia-Manchego M (2008) From radon hazard to risk prediction- based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 56(7):1269–1279

    Article  Google Scholar 

  15. Richon P, Klinger Y, Tapponnier P, Li C-X, Van Der Woerd J, Perrier F (2010) Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges. Radiat Meas 45(2):211–218

    Article  CAS  Google Scholar 

  16. Yadav M, Prasad M, Joshi V, Gusain GS, Ramola RC (2016) A comparative study of radium content and radon exhalation rate from soil samples using active and passive techniques. Radiat Prot Dosim 171(2):254–256

    Article  CAS  Google Scholar 

  17. Kandari T, Prasad M, Pant P, Semwal P, Bourai AA, Ramola RC (2018) Study of radon flux and natural radionuclides (226Ra, 232Th and 40K) in the Main Boundary Thrust region of Garhwal Himalaya. Acta Geophys. 66:1243

    Article  Google Scholar 

  18. Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129(3–4):185–204

    Article  CAS  Google Scholar 

  19. Ramola RC, Gusain GS, Rautela BS, Sagar DV, Prasad G, Shahoo SK, Ishikawa T, Omori Y, Janik M, Sorimachi A, Tokonami S (2012) Levels of thoron and progeny in high background radiation area of southeastern coast of Odisha. India Radiat Prot Dosim 152(1–3):62–65

    Article  CAS  Google Scholar 

  20. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form. Accessed 19 December 2020

  21. Mishra R, Mayya YS (2008) Study of a deposition-based direct thoron progeny sensor (DTPS) technique for estimating equilibrium equivalent thoron concentration (EETC) in indoor environment. Radiat Meas 48(8):1408–1416

    Article  Google Scholar 

  22. Mishra R, Mayya YS, Kushwaha HS (2009) Measurement of 220Rn/222Rn progeny deposition velocities on surfaces and their comparison with theoretical models. J Aerosol Sci 40(1):1–15

    Article  CAS  Google Scholar 

  23. Mishra R, Prajith R, Sapra BK, Mayya YS (2010) Response of direct thoron progeny sensors (DTPS) to various aerosol concentrations and ventilation rates. Nucl Instrum Methods Phys Res B: Beam Interactions with Materials and Atoms 268(6):671–675

    Article  CAS  Google Scholar 

  24. Prasad M, Rawat M, Dangwal A, Yadav M, Gusain GS, Mishra R, Ramola RC (2015) Measurements of radon and thoron progeny concentrations in dwellings of Tehri Garhwal, India, using LR-115 deposition-based DTPS/DRPS technique. Radiat Prot Dosim 167(1–3):102–106

    Article  CAS  Google Scholar 

  25. Ramola RC, Prasad M, Rawat M, Dangwal A, Gusain GS, Mishra R, Tokonami S (2015) Comparative study of various techniques for environmental radon, thoron and progeny measurements. Radiat Prot Dosim 167(1–3):22–28

    Article  CAS  Google Scholar 

  26. Operational manual of RAD7 (2015)

  27. Operational manual of Portable radon monitor Smart RnDuo (2015)

  28. Ramola RC, Prasad M, Kandari T, Pant P, Bossew P, Mishra R, Tokonami S (2016) Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci Rep 6:31061

  29. Narula AK, Saini RS, Goyal SK, Chauhan RP, Chakarvarti SK (2009) Indoor radiation levels enhanced by underground radon diffusion. Asian J Chem 21(10):S275-278

    CAS  Google Scholar 

  30. Shweikani R, Giaddui TG, Durrani SA (1995) The effect of soil parameters on the radon concentration values in the environment. Radiat Meas 25(1–4):581–584

    Article  CAS  Google Scholar 

  31. Singh P, Saini K, Mishra R, Sahoo BK, Bajwa BS (2016) Attached, unattached fraction of progeny concentrations and equilibrium factor for dose assessments from 222Rn and 220Rn. Radiat Environ Biophys 55(3):401–410

    Article  CAS  Google Scholar 

  32. Bangotra P, Mehra R, Kaur K, Kanse S, Mishra R, Sahoo BK (2015) Estimation of EEC, unattached fraction and equilibrium factor for the assessment of radiological dose using pin-hole cup dosimeters and deposition based progeny sensors. J Environ Radioact 148:67–73

    Article  CAS  Google Scholar 

  33. International Commission on Radiological Protection ICRP (2014) Radiological protection against radon exposure. ICRP Publication 126

  34. Ramola RC, Prasad M (2020) Significance of thoron measurements in indoor environment. J Environ Radioact 225:106453

  35. Ramola RC, Prasad G, Gusain GS (2011) Estimation of indoor radon concentration based on radon flux from soil and groundwater. Appl Radiat Isot 69(9):1318–1321

    Article  CAS  Google Scholar 

  36. Gusain GS, Prasad G, Prasad Y, Ramola RC (2009) Comparison of indoor radon level with radon exhalation rate from soil in Garhwal Himalaya. Radiat Meas 44(9–10):1032–1035

    Article  CAS  Google Scholar 

  37. Prasad Y, Prasad G, Gusain GS, Choubey VM, Ramola RC (2008) Radon exhalation rate from soil samples of South Kumaun Lesser Himalayas. India Radiat Meas 43:S369–S374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Panwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panwar, P., Prasad, M. & Ramola, R.C. Study of soil-gas and indoor radon concentration in a test village at Tehri Garhwal, India. J Radioanal Nucl Chem 330, 1383–1391 (2021). https://doi.org/10.1007/s10967-021-07901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07901-x

Keywords

Navigation