Skip to main content
Log in

Separation of 167Tm, 165Er and 169Yb from erbium targets irradiated by 60 MeV alpha particles

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Thin natEr2O3 targets were irradiated on cyclotron by 60 MeV alpha particles. Thulium and ytterbium radioisotopes, formed during irradiation, were separated from the target material and the one from another by extraction chromatography using Ln Resin in nitric solution. 165Er, formed mainly by the decay chain 165Yb → 165Tm → 165Er, was isolated after ingrowth in the thulium fraction by an additional extraction chromatography step using the same sorbent. Recovery of thulium and ytterbium radioisotopes was > 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nayak D, Lahiri S (1999) Application of radioisotopes in the field of nuclear medicine. J Radioanal Nucl Chem 242:423–432. https://doi.org/10.1007/BF02345573

    Article  CAS  Google Scholar 

  2. Rösch F (2007) Radiolanthanides in endoradiotherapy: an overview. Radiochim Acta 95:303–311. https://doi.org/10.1524/ract.2007.95.6.303

    Article  CAS  Google Scholar 

  3. Dash A, Pillai MRA (2010) Knapp FF (2015) production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging 49:85–107. https://doi.org/10.1007/s13139-014-0315-z

    Article  CAS  Google Scholar 

  4. Dadachova E, Mirzadeh S, Lambrecht RM et al (1994) Separation of carrier-free holmium-166 from neutron-irradiated dysprosium targets. Anal Chem 66:4272–4277. https://doi.org/10.1021/ac00095a024

    Article  CAS  Google Scholar 

  5. Formento-Cavaier R, Köster U, Crepieux B et al (2020) Very high specific activity erbium 169Er production for potential receptor-targeted radiotherapy. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 463:468–471. https://doi.org/10.1016/j.nimb.2019.04.022

    Article  CAS  Google Scholar 

  6. Filosofov D, Kurakina E, Radchenko V (2021) Potent candidates for targeted auger therapy: production and radiochemical considerations. Nucl Med Biol 94–95:1–19. https://doi.org/10.1016/j.nucmedbio.2020.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Uusijärvi H, Bernhardt P, Rösch F et al (2006) Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med 47:807–814

    PubMed  Google Scholar 

  8. Qaim SM, Spahn I, Kandil SA, Coenen HH (2007) Nuclear data for production of 88Y, 140Nd, 153Sm and 169Yb via novel routes. Radiochim Acta 95:313–317. https://doi.org/10.1524/ract.2007.95.6.313

    Article  CAS  Google Scholar 

  9. Gracheva N, Carzaniga TS, Schibli R et al (2020) 165Er: a new candidate for Auger electron therapy and its possible cyclotron production from natural holmium targets. Appl Radiat Isot 159:109079. https://doi.org/10.1016/j.apradiso.2020.109079

    Article  CAS  PubMed  Google Scholar 

  10. Tárkányi F, Takács S, Hermanne A et al (2008) Study of activation cross sections of proton induced reactions on erbium for practical applications. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 266:4872–4876. https://doi.org/10.1016/j.nimb.2008.08.005

    Article  CAS  Google Scholar 

  11. Hermanne A, Rebeles RA, Tárkányi F et al (2011) Cross sections for production of longer lived 170,168,167Tm in 16MeV proton irradiation of natEr. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 269:695–699. https://doi.org/10.1016/j.nimb.2011.01.130

    Article  CAS  Google Scholar 

  12. Dmitriev PP, Molin GA, Panarin MV (1980) Yields of165Tu,166Tu,167Tu,168Tu, and170Tu in reactions with protons, deuterons, and a particles. Sov At Energy 48:419–421. https://doi.org/10.1007/BF01126275

    Article  Google Scholar 

  13. Tárkányi F, Hermanne A, Király B et al (2007) Study of activation cross-sections of deuteron induced reactions on erbium: production of radioisotopes for practical applications. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 259:829–835. https://doi.org/10.1016/j.nimb.2007.01.287

    Article  CAS  Google Scholar 

  14. Tárkányi F, Hermanne A, Takács S et al (2012) Activation cross-sections of proton induced nuclear reactions on thulium in the 20–45 MeV energy range. Appl Radiat Isot 70:309–314. https://doi.org/10.1016/j.apradiso.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  15. Tárkányi F, Hermanne A, Takács S et al (2009) Activation cross sections of proton induced nuclear reactions on ytterbium up to 70 MeV. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 267:2789–2801. https://doi.org/10.1016/j.nimb.2009.05.075

    Article  CAS  Google Scholar 

  16. Sadeghi M, Zandi N, Afarideh H (2011) Targetry and specification of 167Tm production parameters by different reactions. J Radioanal Nucl Chem 291:731–738. https://doi.org/10.1007/s10967-011-1422-2

    Article  CAS  Google Scholar 

  17. Beyer GJ, Zeisler SK, Becker DW (2004) The Auger-electron emitter 165Er: excitation function of the 165Ho(p, n)165Er process. Radiochim Acta 92:219–222. https://doi.org/10.1524/ract.92.4.219.35608

    Article  CAS  Google Scholar 

  18. Tárkányi F, Hermanne A, Takács S et al (2008) Experimental study of the 165Ho(p, n) nuclear reaction for production of the therapeutic radioisotope 165Er. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 266:3346–3352. https://doi.org/10.1016/j.nimb.2008.05.005

    Article  CAS  Google Scholar 

  19. Tárkányi F, Takács S, Hermanne A et al (2009) Investigation of production of the therapeutic radioisotope 165Er by proton induced reactions on erbium in comparison with other production routes. Appl Radiat Isot 67:243–247. https://doi.org/10.1016/j.apradiso.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Zandi N, Sadeghi M, Afarideh H (2013) Evaluation of the cyclotron production of 165Er by different reactions. J Radioanal Nucl Chem 295:923–928. https://doi.org/10.1007/s10967-012-2116-0

    Article  CAS  Google Scholar 

  21. Tárkányi F, Hermanne A, Takács S et al (2007) Activation cross sections of the 169Tm(d,2n) reaction for production of the therapeutic radionuclide 169Yb. Appl Radiat Isot 65:663–668. https://doi.org/10.1016/j.apradiso.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  22. Saito M, Aikawa M, Komori Y et al (2017) Production cross sections of 169 Yb and Tm isotopes in deuteron-induced reactions on 169Tm. Appl Radiat Isot 125:23–26. https://doi.org/10.1016/j.apradiso.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  23. Saito M, Aikawa M, Murata T et al (2020) Production cross sections of 169Yb by the proton-induced reaction on 169Tm. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 471:13–16. https://doi.org/10.1016/j.nimb.2020.03.019

    Article  CAS  Google Scholar 

  24. Maiti M, Lahiri S, Szűcs Z (2016) Separation of 163Er from dysprosium target: a step toward neutrino mass measurement through electron capture of 163Ho. J Radioanal Nucl Chem 307:1667–1673. https://doi.org/10.1007/s10967-015-4496-4

    Article  CAS  Google Scholar 

  25. Maiti M, Lahiri S, Tomar BS (2011) Investigation on the production and isolation of 149,150,151 Tb from 12 C irradiated natural praseodymium target. Radiochim Acta 99:527–534. https://doi.org/10.1524/ract.2011.1839

    Article  CAS  Google Scholar 

  26. Zandi N, Sadeghi M, Afarideh H, Yarmohamadi M (2012) Radiochemical studies relevant to cyclotron production of the therapeutic radionuclide 167Tm. Radiochim Acta 100:915–918. https://doi.org/10.1524/ract.2012.1987

    Article  CAS  Google Scholar 

  27. Lahiri S, Volkers KJ, Wierczinski B (2004) Production of 166Ho through 164Dy(n, γ)165Dy(n, γ)166Dy(β−)166Ho and separation of 166Ho. Appl Radiat Isot 61:1157–1161. https://doi.org/10.1016/j.apradiso.2004.03.117

    Article  CAS  PubMed  Google Scholar 

  28. Monroy-Guzman F, Salinas EJ (2015) Separation of Micro-Macrocomponent Systems : 149Pm – Nd, 161Tb-Gd, 166Ho-Dy and 177Lu-Yb by extraction chromatography. J Mex Chem Soc 59:143–150

    CAS  Google Scholar 

  29. Kazakov AG, Aliev RA, Bodrov AY et al (2018) Separation of radioisotopes of terbium from a europium target irradiated by 27 MeV α-particles. Radiochim Acta 106:135–140. https://doi.org/10.1515/ract-2017-2777

    Article  CAS  Google Scholar 

  30. Lehenberger S, Barkhausen C, Cohrs S et al (2011) The low-energy β - and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol 38:917–924. https://doi.org/10.1016/j.nucmedbio.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  31. Horwitz EP, McAlister DR, Bond AH et al (2005) A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot 63:23–36. https://doi.org/10.1016/j.apradiso.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  32. Vaudon J, Frealle L, Audiger G et al (2018) First steps at the cyclotron of orléans in the radiochemistry of radiometals: 52Mn and 165Er. Instruments 2:15. https://doi.org/10.3390/instruments2030015

    Article  CAS  Google Scholar 

  33. Rösch F, Qaim SM, Stöcklin G (1993) Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n)- and natRb(3He, xn)-processes. Radiochim Acta 61:1–8. https://doi.org/10.1524/ract.1993.61.1.1

    Article  Google Scholar 

  34. IAEA (2019) Live Chart of Nuclides. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

  35. Homma Y, Sugitani Y, Matsui Y et al (1980) Cyclotron production of 167Tm from natural erbium and natural holmium. Int J Appl Radiat Isot 31:505–508. https://doi.org/10.1016/0020-708X(80)90314-2

    Article  CAS  Google Scholar 

  36. Király B, Tárkányi F, Takács S et al (2008) Excitation functions of alpha-induced nuclear reactions on natural erbium. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 266:549–554. https://doi.org/10.1016/j.nimb.2007.12.067

    Article  CAS  Google Scholar 

  37. Saito M, Aikawa M, Sakaguchi M et al (2019) Production cross sections of ytterbium and thulium radioisotopes in alpha-induced nuclear reactions on natural erbium. Appl Radiat Isot 154:108874. https://doi.org/10.1016/j.apradiso.2019.108874

    Article  CAS  PubMed  Google Scholar 

  38. Philip Horwitz E, McAlister DR, Dietz ML (2006) Extraction chromatography versus solvent extraction: how similar are they? Sep Sci Technol 41:2163–2182. https://doi.org/10.1080/01496390600742849

    Article  CAS  Google Scholar 

  39. Fidelis I, Krejzler J (1976) Separation factors of lanthanides extracted with dibutylphosphate. J Radioanal Chem 31:45–60. https://doi.org/10.1007/BF02516469

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of the National Research Center "Kurchatov Institute", Order No. 1059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiz A. Aliev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliev, R.A., Khomenko, I.A. & Kormazeva, E.S. Separation of 167Tm, 165Er and 169Yb from erbium targets irradiated by 60 MeV alpha particles. J Radioanal Nucl Chem 329, 983–989 (2021). https://doi.org/10.1007/s10967-021-07865-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07865-y

Keywords

Navigation