Skip to main content
Log in

EC-decay of 133Ba revisited by electron-gamma spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Internal conversion electron and gamma-ray spectroscopy measurements were carried out on the 10.551 y 133Ba electron-capture decay with our electron and gamma spectrometers—a mini-orange electron transporter paired to a Si(Li) detector and a large-volume HPGe detector, respectively. The relative and absolute gamma-ray intensities of all the nine transitions in 133Cs were determined. We also report the relative conversion intensities of eighteen conversion lines and their corresponding internal conversion coefficients (ICCs), four of which are being reported for the first time. Transition intensity balance at each energy level, showed that the measured values are self-consistent. This exhaustive dataset of gamma-ray intensities, internal conversion electron intensities and the ICCs that have low uncertainty, will be highly valuable for the purposes of energy and efficiency calibration of semiconductor gamma ray detectors and electron spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thun JE, Tornkvist S, Nielsen KB, Snellman H, Falk F, Mocoroa A (1966) Levels and transitions in 133Cs. Nucl Phys 88:289–306. https://doi.org/10.1016/0029-5582(66)90589-X

    Article  CAS  Google Scholar 

  2. Notea A, Gurfinkel Y (1968) Transitions in 133Cs from the decay of 133Ba. Nucl Phys A 107:193–208. https://doi.org/10.1016/0375-9474(68)90736-7

    Article  CAS  Google Scholar 

  3. Bosch HE, Haverfield AJ, Szichman E, Abecasis SM (1968) High-resolution studies in the decay of 133Ba with semiconductor counters. Nucl Phys A 108:209–220. https://doi.org/10.1016/0375-9474(68)90154-1

    Article  CAS  Google Scholar 

  4. Donnelly DP, Reidy JJ, Wiedenbeck ML (1968) High-resolution gamma-ray spectroscopic study of the decay 133Ba à 133Cs. Phys Rev 173:1192–1201. https://doi.org/10.1103/PhysRev.173.1192

    Article  CAS  Google Scholar 

  5. Schötzig U, Debertin K, Walz KF (1977) Standardization and decay data of 133Ba. Intern J Appl Radiat Isot 28:503–507. https://doi.org/10.1016/0020-708x(77)90185-5

    Article  Google Scholar 

  6. Yoshizawa Y, Iwata Y, Katoh T, Ruan JZ, Kawada Y (1983) Precision measurements of gamma-ray intensities IV. Low energy region: 75Se and 133Ba. Nucl Instrum Methods 212:249–257. https://doi.org/10.1016/0167-5087(83)90700-7

    Article  CAS  Google Scholar 

  7. Danilenko VN, Konstantinov AA, Kurenkov NV, Kurchatova LN, Malinin AB, Mamelin AV, Matveev SV, Sazonova TE, Stepano EK, Sepman SV, Toporov YuG (1989) Methods of producing radionuclides for spectrometric gamma-ray sources and their standardization-1. Barium-133. Appl Radiat Isot 40:707–710. https://doi.org/10.1016/0883-2889(89)90082-8

    Article  CAS  Google Scholar 

  8. Kumahora H (1985) Precision energy measurement of gamma rays from the decay of 75Se and 133Ba. Nucl Instrum Methods Phys Res A 238:431–442. https://doi.org/10.1016/0168-9002(85)90482-6

    Article  Google Scholar 

  9. Mucciolo ER, Helene O (1987) Energy measurement of gamma rays from 133Ba decay: consistency with cascade cross-over relations. Nucl Instrum Methods Phys Res A 256:153–160. https://doi.org/10.1016/0168-9002(87)91050-3

    Article  Google Scholar 

  10. Helmer RG, van der Leun C (2000) Recommended standards for γ-ray energy calibration (1999). Nucl Instrum Methods Phys Res A 450:35–70. https://doi.org/10.1016/S0168-9002(00)00252-7

    Article  CAS  Google Scholar 

  11. Chauvenet B, Morel J, Legrand J (1983) An international intercomparison of photon emission-rate measurements of x- and gamma-rays emitted in the decay of 133Ba. Intern J Appl Radiat Isot 34:479–485. https://doi.org/10.1016/0020-708X(83)90265-X

    Article  CAS  Google Scholar 

  12. Be MM, Chiste V, Dulieu C, Kellet MA, Mougeot X, Arinc A, Chechev VP, Kuzmenko NK, Kibedi T, Luca A, Nichols AL (2016) Table of radionuclides, vol 8—A = 41 to 198). https://www.bipm.org/utils/common/pdf/monographieRI/Monographie_BIPM-5_Tables_Vol8.pdf

  13. Khazov Y, Rodionov A, Kondev FG (2011) Nuclear data sheets for A = 133. Nucl Data Sheets 112:855–1113. https://doi.org/10.1016/j.nds.2011.03.001

    Article  CAS  Google Scholar 

  14. Hwang HY, Lee CB, Park TS (1998) Subtractions of accidental coincidences and Compton scattered events by multi-channel time scaling technique in γ-ray spectrometry. Appl Radiat Isot 49:1201–1205. https://doi.org/10.1016/S0969-8043(97)10046-X

    Article  CAS  Google Scholar 

  15. Miyahara H, Usami K, Mori C (1996) Precise measurement of the emission probabilities for the weak 161 and 223 keV gamma-rays of 133Ba. Nucl Instrum Methods Phys Res A 374:193–196. https://doi.org/10.1016/0168-9002(95)01420-9

    Article  CAS  Google Scholar 

  16. Avignone FT, Frey GD, Hendrick LD (1970) Internal-conversion penetration effects in M1 transitions of 133Cs. Phys Rev C 1:635–643. https://doi.org/10.1103/PhysRevC.1.635

    Article  Google Scholar 

  17. Hennecke HJ, Manthuruthil JC, Bergman O, Cothern CR (1967) Internal-conversion-electron study of the decay of Ba133 to Cs133. Phys Rev 159:955–968. https://doi.org/10.1103/PhysRev.159.955

    Article  CAS  Google Scholar 

  18. Sergeenkov YV (1984) In: Proceedings of 5th seminar on precise measurements in nuclear spectroscopy, Vilnius, pp 67–70

  19. Venkataramaniah K, Sainath M, Sai K, Rao D, Seetharaman D (2020) Design and development of a mini-orange magnetic spectrometer with multichannel facility for conversion electron spectroscopy. J Nucl Phys Mater Sci Radiat Appl 8:25–31. https://doi.org/10.15415/jnp.2020.81004

    Article  Google Scholar 

  20. Deepa S, Vijay Sai K, Gowrishankar R, Venkataramaniah K (2012) Conversion electron measurements and determination of rotational parameters in 177Lu and 177Hf. Eur Phys J A 48:126–136. https://doi.org/10.1140/epja/i2012-12126-2

    Article  CAS  Google Scholar 

  21. GammaVision-32 (1998) Version 5.10 spectrum acquisition and analysis software. https://www.ortec-online.com/products/application-software/gammavision

  22. Bikit I, Nemes T, Mrda D, Jovančević N (2009) On the absolute source activity measurement with a single detector: the 133Ba case. Nucl Instrum Methods Phys Res A 612:103–111. https://doi.org/10.1016/j.nima.2009.09.060

    Article  CAS  Google Scholar 

  23. Petkov V, Bakaltchev N (1990) FIT a computer program for decomposition of powder diffraction patterns and profile analysis of pair correlation functions. J Appl Cryst 23:138–140. https://doi.org/10.1107/S002188988901410X

    Article  Google Scholar 

  24. X- and Gamma-Ray Decay Data Standards for Detector Calibration Pub1287_Vol2_web. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiq2siq6pnvAhXDzDgGHYJhDsAQFjAAegQIAhAD&url=https%3A%2F%2Fwww-pub.iaea.org%2FMTCD%2FPublications%2FPDF%2FPub1287_Vol2_web.pdf&usg=AOvVaw2-N0M8FAApGyOU_D5mo7JB

  25. Rao DR, Vijay Sai K, Sainath M, Venkataramaniah K (2005) Precision electron-gamma spectroscopic measurements in 75As. Eur Phys J A 26:41–50. https://doi.org/10.1140/epja/i2005-10152-9

    Article  CAS  Google Scholar 

  26. Patil A, Santhosh D, Vijay Sai K, Sainath M, Venkataramaniah K (2006) Precision measurements in 124Te following the decay of 124Sb. Appl Radiat Isot 64:693–699. https://doi.org/10.1016/j.apradiso.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  27. Chechev VP, Kuzmenko NK (2015) 133Ba - Comments on evaluation of decay data. - Comments on evaluation of decay data. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwirgcOJg5XwAhU-zTgGHV8fCoMQFjAAegQIAxAD&url=http%3A%2F%2Fwww.nucleide.org%2FDDEP_WG%2FNuclides%2FBa-133_com.pdf&usg=AOvVaw1KlMTMNWxj3cKOkZ1vrp0W. Accessed 4 Mar 2021

  28. BRICC Online Conversion Coefficient Calculator—Version 2.3S (2018) http://bricc.anu.edu.au/

  29. GTOL Program Package—Version 7.2f (2010) https://www-nds.iaea.org/public/ensdf_pgm/

  30. ENSDAT—Evaluated Nuclear Structure Drawings and Tables. Version 12.13. https://www-nds.iaea.org/workshops/smr1939/Codes/ENSDF_Codes/mswindows/ensdat/ensdat_win.html

  31. Logft Program Package. https://www.nndc.bnl.gov/logft/

  32. GABS Program Package Version 12 (2020) https://www-nds.iaea.org/public/ensdf_pgm/

  33. Törnkvist S, Hasselgren L, Ström S, Thun JE, Antman S (1970) Internal conversion studies of transitions populating and depopulating the 161 keV level in 133Cs. Nucl Phys A 142:238–250. https://doi.org/10.1016/0375-9474(70)90526-9

    Article  Google Scholar 

  34. Ramaniah KV, Reddy KV (1975) Nuclear-structure effect in the K-conversion process of the 223 keV transition in 133Cs. Il Nuovo Cimento A 26:237–242. https://doi.org/10.1007/bf02769010

    Article  Google Scholar 

  35. Church EL, Weneser J (1960) Nuclear structure effects in internal conversion. Annu Rev Nucl Part Sci 10:193–234. https://doi.org/10.1146/annurev.ns.10.120160.001205

    Article  CAS  Google Scholar 

  36. Hager RS, Seltzer EC (1969) Internal conversion tables part III: coefficients for the analysis of penetration effects in internal conversion and E0 internal conversion. Nucl Data Sheets Sect A 6:1–127. https://doi.org/10.1016/S0550-306X(69)80002-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Sri Sathya Sai Institute of Higher Learning, for providing all the laboratory and instrument facilities for undertaking this research work.

Funding

This research work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Deepa.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, S., Vijay Sai, K., Rao, D. et al. EC-decay of 133Ba revisited by electron-gamma spectroscopy. J Radioanal Nucl Chem 328, 1001–1010 (2021). https://doi.org/10.1007/s10967-021-07731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07731-x

Keywords

Navigation