Skip to main content
Log in

Equilibrium calculations for plasmas of volatile halides of III, IV and VI group elements mixed with H2 and H2 + CX4 (X = H, Cl, F) relevant to PECVD of isotopic materials

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The composition of hydrogen and hydrogen-methane plasmas containing ~ 10% of BX3, SiX4, GeX4 (X = F, Cl), SF6, MoF6 and WF6 is calculated for the temperature range ~ 300–4000 K using the equilibrium chemical model. The calculations provide valuable information about thermodynamic parameters (pressure, temperature) needed for condensation of pure elements (in H2 plasma) and their carbides (in H2 + CH4 plasma) and about intermediate reaction products. Using volatile fluorides for plasma chemical deposition alleviates obtaining monoisotopic elements and their isotopic compounds because fluorine is monoisotopic. PECVD is promising method for one-step conversion of fluorides to elemental isotopes and their carbides. For fluorides, further insight is needed into properties of plasmas supported by different types of discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Opalovskii AA, Lobkov EU (1975) Russ Chem Rev 44:97–109

    Google Scholar 

  2. Williams KL, Butoi CI, Fisher ER (2003) J Vac Sci Technol A 21:1688–1701

    CAS  Google Scholar 

  3. Ojkano H, Horike Y (1982) Jap J Appl Phys 21:696–701

    Google Scholar 

  4. Sennkov PG, Kornev RA, Abrosimov NV (2015) J Radioanal Nucl Chem 306:21–30

    Google Scholar 

  5. Suri AK, Subramanian C, Sonber JK, Murthy TSRCh (2010) Int Materials Rev 55:4–40

    CAS  Google Scholar 

  6. Thevenot F (1990) J Eur Ceramic Soc 6:205–225

    CAS  Google Scholar 

  7. Matkovich VI (1977) Boron and Refractory Borides. Springer, Berlin

    Google Scholar 

  8. https://www.tracesciences.com/b.htm

  9. Bendel P (2005) NMR Biomed 18:74–82

    CAS  PubMed  Google Scholar 

  10. Bluhm H, Schreiber L (2019) IEEE Int.Symposium on Circuits and Systems (ISCAS). 26–29 May 2019 Supporo. DOI: 1109/ISCAS.2019.8702477

  11. Seo H, Falk AL, Klimov PV, Miao KC, Galli G, Awschalom DD (2016) Nat Commun 7:12935

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Noda T, Suzuki H, Araki H (1998) Fusion Eng Des 41:173–179

    CAS  Google Scholar 

  13. She Xu, Huang AQ, Lucia O, Ozpinezi B (2017) IEEE Trans Ind Electron 64:8193–8205

    Google Scholar 

  14. Schraml J, Bellama JM (1976) 29Si-Magnetic resonance in the determination of organic structures by physical methods, vol 6. Academic Press, New York

    Google Scholar 

  15. Agostini M, Allardt M, Andreotti E et al (2013) Phys Rev Lett 111:122503

    CAS  PubMed  Google Scholar 

  16. Liu ZT, Zhu JZ, Xu NK, Zheng XL (1997) Japan J Appl Phys 36:3625–3628

    CAS  Google Scholar 

  17. Stephenson CA, O’Brien WA, Penninger MW, Schneider WF, Gillett-Kunnath M, Zajicek JY, Kudrawiec RK, Stillwell RA, Wistey MA (2016) J Appl Phys 120: 053102

    Google Scholar 

  18. Cheltsov AN, Babaev NS, Sosnin LY, Shipilov YD, Bespalov AV, Mochalov PV, Khamylov VK (2013) J Radioanal Nucl Chem 299:989–993

    Google Scholar 

  19. Mochalov LA, Kornev RA, Churbanov MF, Sennikov PG (2014) J Fluorine Chem 160:48–51

    CAS  Google Scholar 

  20. https://www.buyisotope.com/tungsten-isotopes.php

  21. Jakobsen HA (2008) Chemical Reactor Modeling: Multiphase Reactive Flows. Springer, Berlin

    Google Scholar 

  22. Smith WR, Missen RW (1982) Chemical reaction equilibrium analysis: theory and experiment. Wiley, New York

    Google Scholar 

  23. https://cearun.grc.nasa.gov. Accessed on 15 April 2020

  24. Shabanov SV, Gornushkin IB (2018) Appl Phys A 124:716

    Google Scholar 

  25. Shabanov SV, Gornushkin IB (2014) Spectrochim Acta B 100:147–172

    CAS  Google Scholar 

  26. Belov GV, Iorish VS, Yungman VS (2000) High Temp 38:191–196

    CAS  Google Scholar 

  27. Shabarova LV, Sennikov PG, Kornev RA, Plekhovich AD, Kutyin AM (2019) High Energy Chem 53: 482-489

    CAS  Google Scholar 

  28. Shabarova LV, Plekhovich AD, Kutyin AM, Sennikov PG, Kornev (2019) RA High Energy Chem 53:482–489

    CAS  Google Scholar 

  29. Shabarova LV, Plekhovich AD, Kutyin AM, Sennikov PG, Kornev RA (2020) Theor Found Chem Eng 54: 504–513 (in Russian)

    Google Scholar 

  30. Gornushkin IB, Shabanov SV, Sennikov PG (2019) Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-020-10096-w

    Article  Google Scholar 

  31. Reinisch G, Leyssale J-M, Bertrand N, Chollon G, Langlais F, Vignoles G (2008) Surf Coat Technol 203:643–647

    CAS  Google Scholar 

  32. Fridman AP (2008) Chemistry. Cambridge University Press, Cambridge, pp 441–442

    Google Scholar 

  33. Kornev RA, Sennikov PG, Shabarova LV, Shishkin AI, Drozdova TA, Sintsov SV, Vodopyanov AV (2019) High Energy Chem 53:246–253

    CAS  Google Scholar 

  34. Sennikov PG, Kornev RA, Shishkin AI (2017) Plasma Chem Plasma Process 37:997–1008

    CAS  Google Scholar 

  35. Reinisch G, Vignoles GL, Leyssale J-M (2011) J Phys Chem A 115:11579–11588

    CAS  PubMed  Google Scholar 

  36. Cochran AA, Stephenson JB (1970) Metall Trans 1:2875–2880

    CAS  Google Scholar 

  37. Kornev R, Sennikov P, Nazarov V, Sukhanov A, Shabarova L (2019) Plasma Phys Technol 6:127–13

  38. Rehmet C, Cao T, Cheng Y (2016) Plasma Sources Sci Technol 25:0250112

    Google Scholar 

  39. Sennikov PG, Kornev RA, Mochalov LA, Shilaev AA, Golubev SV (2014) High Energy Chem 48:49–53

    CAS  Google Scholar 

  40. Wijesundra M, Azvedo R, Eds (2011) Silicon carbide microsystems for Harsh enviroments. Springer, Berlin, p 232

  41. Maboudian R, Carraro C, Senesky DG, Roper CS (2013) J Vac Sci Technol A 31:050805

    Google Scholar 

  42. Yazdanfar M, Pedersen H, Sukkaew P, Ivanov IG, Danielsson Ö, Kordina O, Hanyen E (2014) J Cryst Growth 390:24–29

    CAS  Google Scholar 

  43. Kornev RA, Sennikov PG, Bulanov AD, Potapov AM (2018) High Energy Chem 52:189–193

    CAS  Google Scholar 

  44. Kornev RA, Sennikov PG, Nazarov VV (2017) Plasma Phys Technol 4:169–172

    Google Scholar 

  45. Kornev R, Sennikov P, Nazarov V, Kut’in A, Plekhovich (2019) Plasma Phys Technol 6:111–114

  46. Ahadi AM, Hunter KI, Kramer NJ, Strunskus T, Kersten H, Faupel F, Kortshagen UR (2016) Appl Phys Lett 108:093105

    Google Scholar 

  47. Garcia M, Ambrosio R, Torres A, Kosarev A (2004) J Non-Cryst Solids 338–340:744–748

    Google Scholar 

  48. Kornev RA, Sennikov PG, Konychev DA (2017) High Energy Chem 51:56–59

    CAS  Google Scholar 

  49. Kornev RA, Sennikov PG (2015) Plasma Chem Plasma Processes 35:1111–1118

    CAS  Google Scholar 

  50. Booth D, Voss K (1981) J de Physique Colloques 42 (C4): C5-1033-C5-1036

  51. Herrold JT, Dalal VL (2000) J Non-Cryst Solids 270:255–259

    CAS  Google Scholar 

  52. Mackowski JM, Cimma B, Pignard R (1992) SPIE 1760:201–209

    CAS  Google Scholar 

  53. Vlasov VA, Pushkarev AI, Remnev GE, Sosnovski SA, Ezhov VV, Guseeva TI (2004) Bull Tomsk Polytekhn University 307:89–93 (in Russian)

    Google Scholar 

  54. Cheltsov AN, Babaev NS, Sosnin LYu, Shipilov YuD, Bespalov AV, Mochalov PV, Khamylov VK (2014) J Radioanal Nucl Chem 299:989–993

    CAS  Google Scholar 

  55. Kornev RA, Sennikov PG, Konychev DA, Potapov AM, Chuvilin DY, Yunin PA, Gusev SA, Naumann M (2016) J Radioanal Nucl Chem 309:833–840

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. U. Panne and Dr. K. Rurack for the support of this project. P.S. acknowledges the DAAD/2019 Grant 9165134. P.S., R.A. and V.S. acknowledge the RSF Grant No 20-13-00035 basic support as well as partly support of Russian Ministry of Education and Science (subject 0095-2019-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Gornushkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornushkin, I.B., Sennikov, P.G., Kornev, R.A. et al. Equilibrium calculations for plasmas of volatile halides of III, IV and VI group elements mixed with H2 and H2 + CX4 (X = H, Cl, F) relevant to PECVD of isotopic materials. J Radioanal Nucl Chem 326, 407–421 (2020). https://doi.org/10.1007/s10967-020-07295-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07295-2

Keywords

Navigation