Skip to main content
Log in

Transformation of electron density distribution induced by the cation point defects in uranium dioxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ab initio calculations on electronic structure of the large fragments of UO2 crystal lattice was performed using Molecular Dynamics and fully relativistic Discrete Variational method. The four types of clusters corresponding to stoichiometric crystal and to the crystals with isolated uranium vacancy and uranium interstitial impurity were considered. We investigated the transformation of valence and vacant bands and the nature of chemical bonding. The estimation of electron density redistribution among atoms of several coordination spheres around defects was performed. In contrast to previous ab initio and semi-empirical calculations, our model included the point symmetry of defects and the possibility of charge transfer between defects and all nearest and next nearest neighbors. We obtained that the deformation of crystal structure and the covalent interactions minimizes (or completely prevent) the electron density transfer between atoms in the vicinity of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cooper MWD, Rushton MJD, Grimes RW (2014) A many-body potential approach to modeling the thermomechanical properties of actinide oxides. J Phys: Condens Matter 26:105401–105410

    CAS  Google Scholar 

  2. Yakub E, Ronchi C, Staicu D (2009) Computer simulation of defects formation and equilibrium in non-stoichiometric uranium dioxide. J Nucl Mater 389:119–126

    Article  CAS  Google Scholar 

  3. Potashnikov SI, Boyarchenkov AS, Nekrasov KA, Kupryazhkin AYa (2011) High-precision molecular dynamics simulation of UO2–PuO2: pair potentials comparison in UO2. J Nucl Mater 419:217–225

    Article  CAS  Google Scholar 

  4. Catlow CRA (1977) Point defects and electronic properties of uranium dioxide. Proc R Soc Lond A 353:533–561

    Article  CAS  Google Scholar 

  5. Yamada K, Kurosaki K, Uno M, Yamanaka S (2000) Evaluation of thermal properties of uranium dioxide by molecular dynamics. J Alloys Compd 307:10–16

    Article  CAS  Google Scholar 

  6. Basak CB, Sengupta AK, Kamath HS (2003) Classical molecular dynamics simulation of UO2 to predict thermophysical properties. J Alloys Compd 360:210–216

    Article  CAS  Google Scholar 

  7. Morelon ND, Ghaleb D, Delaye JM, Van Brutzel L (2003) A new empirical potential for simulating the formation of defects and their mobility in uranium dioxide. Phil Mag 83:1533–1550

    Article  CAS  Google Scholar 

  8. Arima T, Yamasaki S, Inagaki Y, Idemitsu K (2005) Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K. J Alloys Compd 400:43–50

    Article  CAS  Google Scholar 

  9. Govers K, Lemehov S, Hou M, Verwerft M (2007) Comparison of interatomic potentials for UO2. J Nucl Mater 366:161–177

    Article  CAS  Google Scholar 

  10. Read MSD, Jackson RA (2010) Derivation of enhanced potentials for uranium dioxide and the calculation of lattice and intrinsic defect properties. J Nucl Mater 406:293–303

    Article  CAS  Google Scholar 

  11. Williams NR, Molinari M, Parker SC, Storr MT (2015) Atomistic investigation of the structure and transport properties of tilt grain boundaries of UO2. J Nucl Mater 458:45–55

    Article  CAS  Google Scholar 

  12. Ngayam-Happy R, Krack M, Pautz A (2015) Effects of stoichiometry on the defect clustering in uranium dioxide. J Phys: Condens Matter 27:455401–455413

    Google Scholar 

  13. Iwasawa M, Chen Y, Kaneta Y, Ohnuma T, Geng HY, Kinoshita M (2006) First-principles calculation of point defects in uranium dioxide. Mater Trans 47:2651–2657

    Article  CAS  Google Scholar 

  14. Geng HY, Chen Y, Kaneta Y, Iwasawa M, Ohnuma T, Kinoshita M (2008) Point defects and clustering in uranium dioxide by LSDA+U calculations. Phys Rev B 77:104120–104216

    Article  CAS  Google Scholar 

  15. Yu J, Devanathan R, Weber WJ (2009) First-principles study of defects and phase transition in UO2. J Phys: Condensed Matter 21:435401–435410

    Google Scholar 

  16. Andersson DA, Uberguaga BP, Nerikar PV, Unal C, Stanek CR (2011) U and Xe transport in UO2±x: Density functional theory calculations. Phys Rev B 84:054105–54112

    Article  CAS  Google Scholar 

  17. Crocombette JP, Torumba D, Chartier A (2011) Charge states of point defects in uranium oxide calculated with a local hybrid functional for correlated electrons. Phys Rev B 83:184107–184117

    Article  CAS  Google Scholar 

  18. Dorado B, Garcia P, Carlot G, Davoisne C, Fraczkiewicz M, Pasquet B, Freyss M, Valot C, Baldinozzi G, Simeone D, Bertolus M (2011) First-principles calculation and experimental study of oxygen diffusion in uranium dioxide. Phys Rev B 83:035126–35210

    Article  CAS  Google Scholar 

  19. Dorado B, Andersson DA, Stanek CR, Bertolus M, Uberguaga BP, Martin G, Freyss M, Garcia P (2012) First-principles calculations of uranium diffusion in uranium dioxide. Phys Rev B 86:035110–35113

    Article  CAS  Google Scholar 

  20. Dorado B, Freyss M, Amadon B, Bertolus M, Jomard G, Garcia P (2013) Advances in first-principles modeling of point defects in UO2: f electron correlations and the issue of local energy minima. J Phys Condens Matter 25:333201–333213

    Article  CAS  PubMed  Google Scholar 

  21. Vathonne E, Wiktor J, Freyss M, Jomard G, Bertolus M (2014) DFT+U investigation of charged point defects and clusters in UO2. J Phys: Condens Matter 26:325501–325510

    Google Scholar 

  22. Brincat NA, Molinari M, Parker SC, Allen GC, Storr MT (2015) Computer simulation of defect clusters in UO2 and their dependence on composition. J Nucl Mater 456:329–333

    Article  CAS  Google Scholar 

  23. Wang J, Ewing RC, Becker U (2014) Average structure and local configuration of excess oxygen in UO2±x. Sci Rep 4:4216–4225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cooper MWD, Murphy ST, Andersson DA (2018) The defect chemistry of UO2±x from atomistic simulations. J Nucl Mater 504:251–260

    Article  CAS  Google Scholar 

  25. Ryzhkov MV, Kupryazhkin KYa (2009) First-principles study of electronic structure and insulating properties of uranium and plutonium dioxides. J Nucl Mater 384:226–230

    Article  CAS  Google Scholar 

  26. Ryzhkov MV, Kovalenko MA, Kupryazhkin KYa, Gupta SK (2019) Electronic structure and effective charges on atoms near anion point defects in uranium dioxide. Comp Condensed Matter 18:e00353–e359

    Article  Google Scholar 

  27. Kovalenko MA, Kupryazhkin KYa (2015) States of the Schottky defect in uranium dioxide and other type crystals: Molecular dynamics study. J Alloys Compd 645:405–413

    Article  CAS  Google Scholar 

  28. Potashnikov SI, Boyarchenkov AS, Nekrasov KA, Kupryazhkin KYa (2007) Molecular dynamics fitting of interatomic pair potentials in uranium dioxide by thermal expansion. ISJAEE 8:43–52

    Google Scholar 

  29. Rosen A, Ellis DE (1975) Relativistic molecular calculations in the Dirac-Slater model. J Chem Phys 62:3039–3049

    Article  CAS  Google Scholar 

  30. Ellis DE, Goodman GL (1984) Self-consistent Dirac-Slater calculations for molecules and embedded clusters. Int J Quantum Chem 25:185–200

    Article  CAS  Google Scholar 

  31. Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13:4274–4298

    Article  CAS  Google Scholar 

  32. Pyykko P, Toivonen H (1983) Tables of representation and rotation matrices for the relativistic irreducible representations of 38 point groups. Acta Acad Aboensis Ser B 43:1–50

    Google Scholar 

  33. Varshalovich DA, Moskalev AN, Khersonskii VK (1988) Quantum Theory of Angular Momentum. World Scientific, Singapore

    Book  Google Scholar 

  34. Ryzhkov MV, Medvedeva NI, Gubanov VA (1993) Electronic structure and chemical bonding in KTiOPO4. Phys Scr 48:629–632

    Article  CAS  Google Scholar 

  35. Ryzhkov MV, Medvedeva NI, Gubanov VA (1995) Substitution of Pb by Ag as a way to obtain new high temperature superconductors: a quantum chemical point of view. J Phys Chem Solids 56:1231–1237

    Article  CAS  Google Scholar 

  36. Ellis DE, Benesh GA, Byrom E (1979) Self-consistent embedded-cluster model for magnetic impurities Fe, Co and Ni in beta-‘-NiAl. Phys Rev B 20:1198–1207

    Article  CAS  Google Scholar 

  37. Tobin JG, Yu SW, Chang BW, Ryzhkov MV, Mirmelstein A (2013) Direct comparison of spectroscopic data with cluster calculations of plutonium dioxide and uranium dioxide. J Vac Sci and Tech A 31:013001–13003

    Article  CAS  Google Scholar 

  38. Teterin YuA, Maslakov KI, Teterin AYu, Ivanov KE, Ryzhkov MV, Petrov VG, Enina DA, Kalmykov SN (2013) Electronic structure and chemical bonding in PuO2. Phys Rev B 87:245108–245113

    Article  CAS  Google Scholar 

  39. Teterin YuA, Teterin AYu, Ivanov KE, Ryzhkov MV, Maslakov KI, Kalmykov SN, Petrov VG, Enina DA (2014) X-ray photoelectron spectra structure and chemical bond nature in NpO2. Phys Rev B 89:035102–35112

    Article  CAS  Google Scholar 

  40. Teterin AYu, Teterin YuA, Maslakov KI, Panov AD, Ryzhkov MV, Vukcevic L (2006) Electronic structure of solid uranium tetrafluoride UF4. Phys Rev B 74:045101–45109

    Article  CAS  Google Scholar 

  41. Ryzhkov MV, Mirmelstein A, Yu SW, Chung BW, Tobin JG (2013) Probing actinide electronic structure through Pu cluster calculations. Int J Quant Chem 113:1957–1965

    Article  CAS  Google Scholar 

  42. Ryzhkov MV, Mirmelstein A, Delley B, Yu SW, Chung BW, Tobin JG (2014) The effects of mesoscale confinement in Pu clusters and isolated particles. J Electron Spectrosc 194:45–56

    Article  CAS  Google Scholar 

  43. Hirshfeld FL (1985) Accurate electron-densities in molecules. J Mol Struct 130:125–141

    Article  CAS  Google Scholar 

  44. Bader RFW (1990) Atoms in molecules. Clarendon Press, Oxford

    Google Scholar 

  45. Ryzhkov MV (1998) New method for calculating effective charges on atoms in molecules, clusters and solids. J Struct Chem 39:933–937

    Article  CAS  Google Scholar 

  46. Ryzhkov MV, Ivanovskii AL, Delley B (2012) Electronic structure of endohedral fullerenes An@C28 (An = Th – Md). Comp Theor Chem 985:46–52

    Article  CAS  Google Scholar 

  47. Ryzhkov MV, Delley B (2013) Electronic structure of predicted endohedral fullerenes An@C40 (An = Th – Md). Comp Theor Chem 1013:70–77

    Article  CAS  Google Scholar 

  48. Ryzhkov MV, Ivanovskii AL, Delley B (2014) Electronic structure and stabilization of C60 fullerenes encapsulating actinide atom. Nanosystems Phys Chem Math 5:1–15

    Google Scholar 

  49. Ryzhkov MV, Teterin AYu, Teterin YuA (2010) Fully relativistic calculations of ThF4. Int J Quant Chem 110:2697–2704

    Article  CAS  Google Scholar 

  50. Mulliken RS (1978) Chemical bonding. Ann Rev Phys Chem 29:1–30

    Article  CAS  Google Scholar 

  51. Dolg M (ed) (2015) Computational methods in lanthanide and actinide chemistry. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, Grant 16-52-48008 Ind_omi. SKG also thank the Department of Science and Technology (India) and the Russian Foundation for Basic Research for the financial support (Grant INT/RUS/RFBR/IDIR/P-6/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Ryzhkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkov, M.V., Kovalenko, M.A., Kupryazhkin, A.Y. et al. Transformation of electron density distribution induced by the cation point defects in uranium dioxide. J Radioanal Nucl Chem 325, 253–262 (2020). https://doi.org/10.1007/s10967-020-07228-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07228-z

Keywords

Navigation