Skip to main content
Log in

Temporal variation of 210Pb concentration in the urban aerosols of Shanghai, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study monitored 210Pb levels of the atmospheric aerosol in Shanghai from January 2016 to February 2017. 210Pb levels were found to be low in non-haze weather events (1.46 ± 0.76 mBq/m3, n = 8) and high in moderate pollution weather events (2.34 ± 1.43 mBq/m3, n = 12). Similar to those of other East Asian regions, monthly averaged 210Pb concentration showed a U-shaped distribution pattern, indicating that the East Asian monsoon has an impact on atmospheric 210Pb. Particulate matters (PM) had a significant positive correlation with 210Pb, indicating that there might occur an intensified 210Pb scavenging processes. The linear correlation analysis revealed a clear link between 210Pb and some gaseous pollutants, strong positive correlation between CO and 210Pb (210Pb/CO, R = 0.63, P < 0.01), and weak correlation between 210Pb and O3 (R = − 0.35), NO2 (R = 0.42), and SO2 (R = 0.34). This phenomenon demonstrated that in haze weather, not only the general air pollutants concentrations have increased, but also the 210Pb concentration. Radiation dosimetry of daily inhalation of 210Pb through exposure to outdoor air is estimated to be relatively minor; children intake remains higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan G, Cho HM, Lee I, Kim G (2012) Significant emissions of 210Po by coal burning into the urban atmosphere of Seoul, Korea. Atmos Environ 54:80–85

    CAS  Google Scholar 

  2. Ram K, Sarin MM (2012) Atmospheric 210Pb, 210Po and 210Po/210Pb activity ratio in urban aerosols: temporal variability and impact of biomass burning emission. Tellus Ser B Chem Phys Meteorol 64:1–11

    Google Scholar 

  3. Kim KP, Wu CY, Birky B, Nall W, Bolch W (2006) Characterization of radioactive aerosols in Florida phosphate processing facilities. Aerosol Sci Technol 40(6):410–421

    CAS  Google Scholar 

  4. Khater AE, Bakr WF (2011) Technologically enhanced 210Pb and 210Po in iron and steel industry. J Environ Radioact 102(5):527–530

    CAS  PubMed  Google Scholar 

  5. Paatero J, Vesterbacka K, Makkonen U, Kyllönen K, Hellen H, Hatakka J, Anttila P (2009) Resuspension of radionuclides into the atmosphere due to forest fires. J Radioanal Nucl Chem 282(2):473–476

    CAS  Google Scholar 

  6. Jia G, Torri G, Centioli D, Magro L (2013) A radiological survey and the impact of the elevated concentrations of 210Pb and 210Po released from the iron- and steel-making plant ILVA Taranto (Italy) on the environment and the public. Environ Sci Process Impacts 15(3):677–689

    CAS  PubMed  Google Scholar 

  7. Lozano RL, Hernández-Ceballos MA, Rodrigo JF, Miguel EG, Casas-Ruiz M, García-Tenorio R, Bolívar JP (2013) Mesoscale behavior of 7Be and 210Pb in superficial air along the Gulf of Cadiz (south of Iberian Peninsula). Atmos Environ 80:75–84

    CAS  Google Scholar 

  8. Papastefanou C, Ioannidou A (1995) Aerodynamic size association of 7Be in ambient aerosols. J Environ Radioact 26(3):273–282

    CAS  Google Scholar 

  9. Tomarchio AGE (2018) An experimental search for a correlation between outdoor 222Rn concentration and 210Pb activity in air particulate samples. Nucl Technol Radiat Prot 33(1):112–116

    CAS  Google Scholar 

  10. Haninger T, Winkler R, Roth P, Trautmannsheimer M, Wahl W (2000) Indoor air as an important source for 210Pb accumulation in man. Radiat Prot Dosim 87(3):187–191

    CAS  Google Scholar 

  11. Sun Y, Zhuang G, Tang A, Wang Y, An Z (2006) Chemical characteristics of PM2.5 and PM10 in haze–fog episodes in Beijing. Environ Sci Technol 40(10):3148–3155

    CAS  PubMed  Google Scholar 

  12. Leng C, Duan J, Xu C, Zhang H, Wang Y, Wang Y, Li X, Kong L, Tao J, Zhang R, Cheng T, Zha S, Yu X (2016) Insights into a historic severe haze event in Shanghai: synoptic situation, boundary layer and pollutants. Atmos Chem Phys 16(14):9221–9234

    CAS  Google Scholar 

  13. Qiao T, Zhao M, Xiu G, Yu J (2016) Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: implications for characterization of haze pollution and source apportionment. Sci Total Environ 557–558:386–394

    PubMed  Google Scholar 

  14. Wei N, Wang G, Zhouga D, Deng K, Feng J, Zhang Y, Xiao D, Liu W (2017) Source apportionment of carbonaceous particulate matter during haze days in Shanghai based on the radiocarbon. J Radioanal Nucl Chem 313(1):145–153

    CAS  Google Scholar 

  15. Han D, Wang Z, Cheng J, Wang Q, Chen X, Wang H (2017) Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation. Environ Sci Pollut Res 24(22):18619–18629

    CAS  Google Scholar 

  16. https://www.jfdaily.com/news/detail?id=77020

  17. Huang D, Xiu G, Li M, Hua X, Long Y (2017) Surface components of PM2.5 during clear and hazy days in Shanghai by ToF-SIMS. Atmos Environ 148:175–181

    CAS  Google Scholar 

  18. http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/W020120410332725219541.pdf

  19. Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact 102(5):500–513

    CAS  PubMed  Google Scholar 

  20. Tuo F, Pang C, Wang W, Zhang J, Zhou Q, Yao S, Li W, Li Z (2018) Level, distribution, variation and sources of Pb-210 in atmosphere in North China. J Radioanal Nucl Chem 318(3):1855–1862

    CAS  Google Scholar 

  21. Du J, Du J, Baskaran M, Bi Q, Huang D, Jiang Y (2015) Temporal variations of atmospheric depositional fluxes of 7Be and 210Pb over 8 years (2006–2013) at Shanghai, China, and synthesis of global fallout data. J Geophys Res Atmos 120(9):4323–4339

    CAS  Google Scholar 

  22. http://www.semc.gov.cn/aqi/home/Index.aspx

  23. McNeary D, Baskaran M (2007) Residence times and temporal variations of 210Po in aerosols and precipitation from southeastern Michigan, United States. J Geophys Res Atmos. https://doi.org/10.1029/2006JD007639

    Article  Google Scholar 

  24. Ahmed AA, Mohamed A, Ali AE, Barakat A, El-Hady MA, El-Hussein A (2004) Seasonal variations of aerosol residence time in the lower atmospheric boundary layer. J Environ Radioact 77(3):275–283. https://doi.org/10.1016/j.jenvrad.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  25. Długosz M, Grabowski P, Bem H (2010) 210Pb and 210Po radionuclides in the urban air of Lodz, Poland. J Radioanal Nucl Chem 283(3):719–725

    Google Scholar 

  26. Ali N, Khan EU, Akhter P, Khattak NU, Khan F, Rana MA (2011) The effect of air mass origin on the ambient concentrations of 7Be and 210Pb in Islamabad, Pakistan. J Environ Radioact 102(1):35–42. https://doi.org/10.1016/j.jenvrad.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  27. Gordo E, Liger E, Dueñas C, Fernández MC, Cañete S, Pérez M (2015) Study of 7Be and 210Pb as radiotracers of African intrusions in Malaga (Spain). J Environ Radioact 148:141–153. https://doi.org/10.1016/j.jenvrad.2015.06.028

    Article  CAS  PubMed  Google Scholar 

  28. Tositti L, Brattich E, Cinelli G, Baldacci D (2014) 12 years of 7Be and 210Pb in Mt. Cimone, and their correlation with meteorological parameters. Atmos Environ 87:108–122. https://doi.org/10.1016/j.atmosenv.2014.01.014

    Article  CAS  Google Scholar 

  29. Chham E, Piñero-García F, González-Rodelas P, Ferro-García MA (2017) Impact of air masses on the distribution of 210Pb in the southeast of Iberian Peninsula air. J Environ Radioact 177:169–183

    CAS  PubMed  Google Scholar 

  30. Pan J, Wang F, Chen L, Ren X, Zhang J, Zhao S, Cao Z, Pan Z (2017) The preliminary analysis of 210Pb and 210Po activity concentration in main cities of China. Radiat Prot 37(6):433–437 (in Chinese)

    Google Scholar 

  31. UNSCEAR (2000) Sources, effects and risk of ionizing radiation, vol 1. United Nations Scientific Committee on Effects of Atomic Radiation, New York

    Google Scholar 

  32. Li J, Wang C, Pan Z, Jiang Z, Chen L, Zhang Y, Pan J, Wang C, Li J, Liu R (2019) Analysis of 210Pb and 210Po emissions from coal-fired power plants. Fuel 236:278–283. https://doi.org/10.1016/j.fuel.2018.08.075

    Article  CAS  Google Scholar 

  33. Howard J, Weyhrauch J, Loriaux G, Schultz B, Baskaran M (2019) Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain. Environ Pollut 255:113350. https://doi.org/10.1016/j.envpol.2019.113350

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Liu Q, Sheng T, Li F, Xu Z, Han D, Zhang X, Huang X, Fu Q, Cheng J (2019) A high temporal-spatial emission inventory and updated emission factors for coal-fired power plants in Shanghai, China. Sci Total Environ 688:94–102. https://doi.org/10.1016/j.scitotenv.2019.06.201

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Fan C, Xiang M, Liu P, Mu F, Meng Q, Wang W (2018) Short-term variations of indoor and outdoor radon concentrations in a typical semi-arid city of Northwest China. J Radioanal Nucl Chem 317(1):297–306

    CAS  Google Scholar 

  36. Tanahara A, Nakaema F, Zamami Y, Arakaki T (2014) Atmospheric concentrations of 210Pb and 7Be observed in Okinawa Islands. Radioisotopes 63(4):175–181

    CAS  Google Scholar 

  37. Men W, Lin J, Wang F, Yin M (2016) Atmospheric processes studies and radiation dose assessment based on 7Be, 210Pb and 210Po around Xiamen Island. J Appl Oceanogr 35(2):266–274 (in Chinese)

    Google Scholar 

  38. Wang Y, Wu J, Sun W, Luo W, Zhang B, Wang Y (2014) Monitoring the variation of 210Pb concentration in aerosol of Lanzhou from 2009–2012. Nucl Electron Detect Technol 34(1):114–116 (in Chinese)

    Google Scholar 

  39. Wan GJ, Lee HN, Wan EY, Wang SL, Yang W, Wu FC, Chen JA, Wang CS (2008) Analyses of 210Pb concentrations in surface air and in rain water at the central Guizhou, China. Tellus Ser B Chem Phys Meteorol 60(1):32–41

    Google Scholar 

  40. Wu Y, Zeng Z, Ma H (2018) Radionuclide analysis of aerosol in Beijing (2013–2016). Radiat Prot 38(3):197–205 (in Chinese)

    Google Scholar 

  41. Qin L, Li M, Jiang L, Song H (2016) Radioactivity characteristics of atmospheric aerosol samples in Guangzhou. Nucl Technol 39(9):1–7 (in Chinese)

    Google Scholar 

  42. Cao Z, Yang Y, Wang L, Wang K (2018) The activity concentration of 210Pb and 210Po in Hangzhou atmosphere and induced public dose assessment. Radiat Prot 38(1):8–14 (in Chinese)

    Google Scholar 

  43. Song H, Li L, Li Q, Mo G, Huang N (2003) Atmospheric concentration of 210Pb in Daya Bay, Guangdong Province. In: Compilation of papers from the national symposium on radioactive effluents and environmental monitoring and evaluation (in Chinese)

  44. Shi H, Zhang Y, Dang A, Dong Z (2017) Variation in activity concentration of 210Pb in atmospheric aerosol and its radiation dose assessment in Qingdao. Chin J Radiol Med Prot 37(5):372–375 (in Chinese)

    Google Scholar 

  45. Anand SJS, Rangarajan C (1990) Studies on the activity ratios of polonium-210 to lead-210 and their dry-deposition velocities at Bombay in India. J Environ Radioact 11(3):235–250

    Google Scholar 

  46. Akata N, Kawabata H, Hasegawa H, Sato T, Chikuchi Y, Kondo K, Hisamatsu S, Inaba J (2008) Total deposition velocities and scavenging ratios of 7Be and 210Pb at Rokkasho, Japan. J Radioanal Nucl Chem 277(2):347–355

    CAS  Google Scholar 

  47. Momoshima N, Nishio S, Kusano Y, Fukuda A, Ishimoto A (2006) Seasonal variations of atmospheric 210Pb and 7Be concentrations at Kumamoto, Japan and their removal from the atmosphere as wet and dry depositions. J Radioanal Nucl Chem 268(2):297–304

    CAS  Google Scholar 

  48. Sato S, Koike Y, Saito T, Sato J (2003) Atmospheric concentration of 210Pb and 7Be at Sarufutsu, Hokkaido, Japan. J Radioanal Nucl Chem 255(2):351–353

    CAS  Google Scholar 

  49. Sato J, Doi T, Segawa T, Sugawara SI (1994) Seasonal variation of atmospheric concentrations of 210Pb and 7Be at Tsukuba, Japan, with a possible observation of 210Pb originating from the 1991 eruption of Pinatubo volcano. Geochem J 28(2):123–129

    CAS  Google Scholar 

  50. Sato S, Sato J (2000) Atmospheric concentration of 210Pb at Beijing and Chengdu, the People’s Republic of China. Radioisotopes 49(9):439–446

    CAS  Google Scholar 

  51. Mohan MP, Dsouza RS, Nayak SR, Kamath SS, Shetty T, Kumara KS, Yashodhara I, Mayya YS, Karunakara N (2018) A study of temporal variations of 7Be and 210Pb concentrations and their correlations with rainfall and other parameters in the South West Coast of India. J Environ Radioact 192:194–207

    CAS  PubMed  Google Scholar 

  52. Zheng X, Wan G, Chen Z, Tang J (2008) Measurement and meteorological analysis of 7Be and 210Pb in aerosol at Waliguan Observatory. Adv Atmos Sci 25(3):404–416

    CAS  Google Scholar 

  53. He J, Yu Y, Xie Y, Mao H, Wu L, Liu N, Zhao S (2016) Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water Air Soil Pollut 227:235. https://doi.org/10.1007/s11270-016-2930-z

    Article  CAS  Google Scholar 

  54. Uğur A, Özden B, Saç M, Yener G (2003) Biomonitoring of 210Po and 210Pb using lichens and mosses around a uraniferous coal-fired power plant in western Turkey. Atmos Environ 37:2237–2245

    Google Scholar 

  55. EPA (2002) Supplemental guidance for developing soil screening levels for superfund sites. Office of soild waste and emergency response. US Environmental Protection Agency, Washington DC, OSWER 9355.4-24

Download references

Acknowledgments

This research was supported by the Fundamental Research Funds for the Central Universities and the SKLEC Open Research Fund (Grant SKLEC-KF201806). We also acknowledge the students (Miss Lijun Zhao and Miss Juan Du) of the RIC group in ECNU for sampling and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangqiang Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Zhong, Q., Wang, Q. et al. Temporal variation of 210Pb concentration in the urban aerosols of Shanghai, China. J Radioanal Nucl Chem 323, 1135–1143 (2020). https://doi.org/10.1007/s10967-020-07027-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07027-6

Keywords

Navigation