Skip to main content
Log in

In situ electrosynthesis of magnetic Prussian blue/ferrite composites for removal of cesium in aqueous radioactive waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study prussian blue (PB)/ferrite composites by in situ electrosynthesis were used to remove cesium (Cs) from aqueous radioactive waste. The effect of various reaction conditions on Cs+ removal effect was investigated by measuring residual Cs concentration using ICP-MS, exploring the reaction mechanism by using SEM–EDS, TEM, FT-IR, XRD and VSM. The results show it was feasible to remove Cs+ from simulated radioactive aqueous waste by in situ electrosynthesis of magnetic ferrocyanide composites. The best removal efficiency was 99.70%. The composites consist of a mixture of PB, CsFe[Fe(CN)6] and Fe3O4. Meanwhile, composites can rapidly separated from aqueous waste by magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang H, Du L, Tian X, Fan Z, Sun C, Liu Y, Keelan JA, Nie G (2014) Effects of nanoparticle size and gestational age on maternal biodistribution and toxicity of gold nanoparticles in pregnant mice. Toxicol Lett 230(1):10–18

    Article  CAS  PubMed  Google Scholar 

  2. Yang H, Lei S, Zhai J, Li H, Yu H (2013) In situ controllable synthesis of magnetic prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2(2):326–332

    Article  Google Scholar 

  3. Assimakopoulos PA, Ioannides KG, Karamanis DT, Pakou AA, Stamoulis KC, Vayonakis A, Veltsos E (1993) Time dependence of the transfer factor of 137Cs from surface soil to plants. Sci Total Environ 138(1–3):309–315

    Article  CAS  Google Scholar 

  4. Andersson KG, Roed J (1994) The behaviour of chernobyl 137 Cs, 134 Cs and 106 Ru in undisturbed soil: implications for external radiation. J Environ Radioact 22(3):183–196

    Article  CAS  Google Scholar 

  5. Daburon F, Archimbaud Y, Cousi J, Fayart G, Hoffschir D, Chevallereau I, Creff HL, Gueguen L (1991) Radiocaesium transfer to ewes fed contaminated hay after the chernobyl accident: effect of vermiculite and AFCF (ammonium ferricyanoferrate) as countermeasures. J Environ Radioact 14(1):73–84

    Article  CAS  Google Scholar 

  6. Ratnikov AN, Vasiliev AV, Alexakhin RM, Krasnova EG, Pasternak AD, Howard BJ, Hove K, Strand P (1998) The use of hexacyanoferrates in different forms to reduce radiocaesium contamination of animal products in Russia. Sci Total Environ 223(2–3):167–176

    Article  CAS  PubMed  Google Scholar 

  7. Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15(6):1689

    Article  Google Scholar 

  8. Jeon C (2016) Removal of cesium ions from aqueous solutions using immobilized nickel hexacyanoferrate-sericite beads in the batch and continuous processes. J Ind Eng 40:93–98

    Article  CAS  Google Scholar 

  9. Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50(14):7290–7304

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Wang X, Zhao G, Chen C, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356

    Article  CAS  Google Scholar 

  11. Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, Luo YK (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160(5):142–149

    Article  CAS  PubMed  Google Scholar 

  12. Nogami M, Sugiyama Y, Kawasaki T, Harada M, Morita Y, Kikuchi T, Ikeda Y (2010) Adsorptivity of polyvinylpolypyrrolidone for selective separation of U(VI) from nitric acid media. J Radioanal Nucl Chem 283(2):541–546

    Article  CAS  Google Scholar 

  13. Özeroğlu C, Bilgiç ÖD (2015) Use of the crosslinked copolymer functionalized with acrylic acid for the removal of strontium ions from aqueous solutions. J Radioanal Nucl Chem 305(2):551–565

    Article  CAS  Google Scholar 

  14. Venkatesan KA, Shymala KV, Antony MP, Srinivasan TG, Rao PRV (2008) Batch and dynamic extraction of uranium(VI) from nitric acid medium by commercial phosphinic acid resin, Tulsion Ch-96. J Radioanal Nucl Chem 275(3):563–570

    Article  CAS  Google Scholar 

  15. Özeroğlu C, Keçeli G (2009) Kinetic and thermodynamic studies on the adsorption of U(VI) ions on densely crosslinked poly(methacrylic acid) from aqueous solutions. Radiochim Acta 97:709–717

    Article  CAS  Google Scholar 

  16. Karadağ E, Saraydın D, Güven O (1995) Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions. Sep Sci Technol 30(20):3747–3760

    Article  Google Scholar 

  17. Özeroğlu C, Doğan E, Keçeli G (2011) Investigation of Cs(I) adsorption on densely crosslinked poly(sodium methacrylate) from aqueous solutions. J Radioanal Nucl Chem 289(2):577–586

    Article  CAS  Google Scholar 

  18. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 66:192–200

    Google Scholar 

  19. Kazemian H, Zakeri H (2006) Rabbani MS Cs and Sr removal from solution using potassium nickel hexacyanoferrate impregnated zeolites. J Radioanal Nucl Chem 268(2):231–236

    Article  CAS  Google Scholar 

  20. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured prussian blue particles with high accessible surface areas. J Radioanal Nucl Chem 22(35):18261–18267

    CAS  Google Scholar 

  21. Li B, Liao B, Wu JL, Zhang JJ, Zhao D, Jun ZH (2008) Removal of radioactive cesium from solutions by zinc ferrocyanide. Sci Technol 19(2):88–92

    CAS  Google Scholar 

  22. Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper–potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177(6):1817–1828

    Article  CAS  Google Scholar 

  23. Sasaki T, Tanaka S (2011) Magnetic separation of cesium ion using prussian blue modified magnetite. Chem Lett 41(1):32–34

    Article  CAS  Google Scholar 

  24. Chang L, Chang S, Chen W, Han W, Li Z, Zhang Z, Dai Y, Chen D (2016) Facile one-pot synthesis of magnetic prussian blue core/shell nanoparticles for radioactive cesium removal. RSC Adv 6(98):96223–96228

    Article  CAS  Google Scholar 

  25. Huang G, Dou P, Zhen Z, Jing Y (2018) Removal of cobalt from liquid radioactive waste by in situ electrochemical synthesis of ferrite. J Radioanal Nucl Chem 316(1):61–70

    Article  CAS  Google Scholar 

  26. Barale M, Lefèvre G, Carrette F, Catalette H, Fédoroff M, Cote G (2008) Effect of the adsorption of lithium and borate species on the zeta potential of particles of cobalt ferrite, nickel ferrite, and magnetite. J Comb Chem 328(1):34–40

    CAS  Google Scholar 

  27. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53(8):3436–3441

    Article  CAS  Google Scholar 

  28. Parajuli D, Takahashi A, Noguchi H, Kitajima A, Tanaka H, Takasaki M, Yoshino K, Kawamoto T (2016) Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chem Eng J 283:1322–1328

    Article  CAS  Google Scholar 

  29. Yang Y, Faustino PJ, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E, Place DA, Duffy EP, Lawrence XY (2008) Quantitative determination of thallium binding to ferric hexacyanoferrate: prussian blue. Int J Pharm 353(1–2):187–194

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Deng T, Dai Y (2005) Study on the processes and mechanism of the formation of Fe3O4 at low temperature. J Alloys Compd 390(1–2):127–132

    Article  CAS  Google Scholar 

  31. Mazario E, Morales M, Galindo R, Herrasti P, Menendez N (2012) Influence of the temperature in the electrochemical synthesis of cobalt ferrites nanoparticles. J Alloys Compd 536:S222–S225

    Article  CAS  Google Scholar 

  32. Jia Z, Sun G (2007) Preparation of prussian blue nanoparticles with single precursor. Colloids Surf A 302(1–3):326–329

    Article  CAS  Google Scholar 

  33. Jang J, Lee DS (2016) Magnetic prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55(13):3852–3860

    Article  CAS  Google Scholar 

  34. Su JY, Jin GP, Chen T, Liu XD, Chen CN, Tian JJ (2017) The characterization and application of prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium. Electrochim Acta 230:399–406

    Article  CAS  Google Scholar 

  35. Wilde RE, Ghosh SN, Marshall BJ (1970) Prussian blues. Inorg Chem 9(11):2512–2516

    Article  CAS  Google Scholar 

  36. Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y (2012) Synthesis of prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed 51(4):984–988

    Article  CAS  Google Scholar 

  37. Pogorilyi R, Melnyk I, Zub Y, Carlson S, Daniel G, Svedlindh P, Seisenbaeva G, Kessler V (2014) New product from old reaction: uniform magnetite nanoparticles from iron-mediated synthesis of alkali iodides and their protection from leaching in acidic media. Rsc Adv 4(43):22606–22612

    Article  CAS  Google Scholar 

  38. Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K, Sakamoto M, Takahashi A (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42(45):16049–16055

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank for the help from the analysts at Center of Analysis and Test, Laboratory for Resource and Environmental Education, and School of Chemical Engineering in East China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtuan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Chen, J., Dou, P. et al. In situ electrosynthesis of magnetic Prussian blue/ferrite composites for removal of cesium in aqueous radioactive waste. J Radioanal Nucl Chem 323, 557–565 (2020). https://doi.org/10.1007/s10967-019-06966-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06966-z

Keywords

Navigation