Skip to main content
Log in

Preliminary evaluation of SEM/EDS technique for the determination of colloid diffusion coefficient in granite matrix

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Colloids present high sorption for many solutes and are considered potential contaminant carriers in geological environments. Experimental quantitative data are required for an adequate description of colloid-mediated transport within natural media. In this paper, the line scan function of SEM/EDS was firstly applied to study colloid diffusion by depth profile in crystalline rock and the apparent diffusion coefficient was estimated to be ~ 6E−18 m2/s for 20 nm gold colloids. This technique can be applied to the prediction of colloid-facilitated radionuclide transport through water-saturated fractured porous rock for safety assessment of geological disposal for high-level radioactive waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59

    Article  CAS  Google Scholar 

  2. Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloid Surf A Physicochem Eng Asp 107:1–56

    Article  CAS  Google Scholar 

  3. Missana T, Alonso U, Albarran N, García-Gutiérrez M, Cormenzana JL (2011) Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment. Phys Chem Earth Parts A/B/C 36:17–18

    Article  Google Scholar 

  4. McCarthy JF, Degueldre C (1993) Sampling and characterization of groundwater colloids for studying their role in the subsurface transport of contaminants. Environ Part 2:247–315

    Google Scholar 

  5. Degueldre C, Pfeiffer HR, Alexander W, Wernli B, Bruetsch R (1993) Colloid properties in granitic groundwater systems. I: sampling and characterization. Appl Geochem 11:677–695

    Article  Google Scholar 

  6. Alonso U (2006) Role of inorganic colloids generated in a high-level deep geological repository in the migration of radionuclides: open questions. J Iber Geol 32:79–94

    Google Scholar 

  7. Grindrod P (1993) The impact of colloids on the migration and dispersal of radionuclides with in fractured rock. J Contam Hydrol 13:167–181

    Article  CAS  Google Scholar 

  8. James SC, Chrysikopoulos CV (1999) Transport of polydisperse colloid suspensions in a single fracture. Water Resour Res 35:707–718

    Article  Google Scholar 

  9. Kosakowski G (2004) Anomalous transport of colloids and solutes in a shear zone. J Contam Hydrol 72:23–46

    Article  CAS  Google Scholar 

  10. McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23:496–502

    CAS  Google Scholar 

  11. Möri A, Alexander WR, Geckeis H, Hauser W, Schäfer T, Eikenberg J, Fierz T, Degueldre C, Missana T (2003) The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in fractured rock. Colloid Surf A Physicochem Eng Asp 217:33–47

    Article  Google Scholar 

  12. Smith PA, Degueldre C (1993) Colloid-facilitated transport of radionuclides through fractured media. J Contam Hydrol 13:143–166

    Article  CAS  Google Scholar 

  13. Oswald JG, Ibaraki M (2001) Migration of colloids in discretely fractured porous media: effect of colloidal matrix diffusion. J Contam Hydrol 52:213–244

    Article  CAS  Google Scholar 

  14. Hunter RJ (1986) Foundations of colloid science, vol 1. Clarendon Press, Oxford

    Google Scholar 

  15. Cumbie DH, McKay LD (1999) Influence of diameter on particle transport in a fractured shale saprolite. J Contam Hydrol 37:139–157

    Article  CAS  Google Scholar 

  16. Alonso U, Missana T, Patelli A, Rigato V (2007) Bentonite colloid diffusion through the host rock of a deep geological repository. Phys Chem Earth 32:469–476

    Article  Google Scholar 

  17. Alonso U, Missana T, Patelli A, Rigato V, Ravagnan J (2007) Colloid diffusion in crystalline rock; an experimental methodology to measure diffusion coefficients and evaluate colloid size dependence. Earth Planet Sci Lett 259:372–383

    Article  CAS  Google Scholar 

  18. Kelly CJ, McFarlane CR, Schneider DA, Jackson SE (2014) Dating micrometre-thin rims using a LA-ICP-MS depth profiling technique on zircon from an Archaean meta sediment: comparison with the SIMS depth profiling method. Geostand Geoanal Res 38:389–407

    Article  CAS  Google Scholar 

  19. Rasmussen C, Stockli DF, Ross CH, Pickersgill A, Gulick SP, Schmieder M, Christeson GL, Wittmann A, Kring DA, Morgan JV (2019) U–Pb memory behavior in Chicxulub’s peak ring—applying U-Pb depth profiling to shocked zircon. Chem Geol 525:356–367

    Article  CAS  Google Scholar 

  20. Kulkarni NS, Warmack RJB, Radhakrishnan B, Hunter JL, Sohn Y, Coffey KR, Murch GE, Belova IV (2014) Overview of SIMS-based experimental studies of tracer diffusion in solids and application to Mg self-diffusion. J Phase Equilib Diff 35:762–778

    Article  CAS  Google Scholar 

  21. García-Gutiérrez M, Cormenzana JL, Missana T, Mingarro M, Molinero J (2006) Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite. J Iber Geol 32:37–55

    Google Scholar 

  22. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  23. Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic Press, London

    Google Scholar 

  24. Hsieh PS, Lin W (2012) The spent nuclear fuel final disposal program—characterization and evaluation of potential host rock—potential host rock characteristics investigation (Project 2010-2012)—rock and mineral characterization of boreholes at K-area. Industrial Technology Research Institute (ITRI), SNFD-GEL-90-288 (Chinese edition)

  25. Alonso U, Missana T, García-Gutiérrez M, Patelli A, Siitari-Kauppi M, Rigato V (2009) Diffusion coefficient measurements in consolidated clay by RBS micro-scale profiling. Appl Clay Sci 43:477–484

    Article  CAS  Google Scholar 

  26. Tsai SC, Lee CP, Tsai TL, Yu YC (2017) Characterization of cesium diffusion behavior into granite matrix using Rutherford backscattering spectrometry. Nucl Instrum Methods Phys Res Sect B 409:305–308

    Article  CAS  Google Scholar 

  27. Bagalkot N, Kumar GS (2018) Colloid transport in a single fracture–matrix system: gravity effects, influence of colloid size and density. Water 10:1531–1547

    Article  Google Scholar 

  28. Optimizing spatial resolution for EDS analysis. https://www.edax.com/-/media/ametekedax/files/resources/tips_tricks/optimizingspatialresolutionforedsanalysis.pdf. Accessed 11 Oct 2019

  29. Scanning electron microscope (SEM) with OXFORD Inca EDS. https://tw.caeonline.com/buy/scanning-electron-microscopes/jeol-jsm-6510/9197947. Accessed 12 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hung Shih.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, TL., Shih, YH., Chen, LC. et al. Preliminary evaluation of SEM/EDS technique for the determination of colloid diffusion coefficient in granite matrix. J Radioanal Nucl Chem 322, 1803–1808 (2019). https://doi.org/10.1007/s10967-019-06915-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06915-w

Keywords

Navigation