Skip to main content
Log in

Radiochemical characterization of spent filter cartridges from the primary circuit of a research reactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiochemical-based analyses have been used for the characterization of radioactive waste. Nevertheless, the determination of alpha, beta and gamma emitters by radiochemical analysis of spent cartridge filters from a swimming-pool type reactor has not been previously addressed. This work aims at identifying and quantifying the radionuclides present in this waste, including the difficult to measure radionuclides. The distribution of the radionuclides in the filter was investigated by the determination of gamma-emitting nuclides and the z-score of the measured activity concentrations. The results indicated that all the filters are homogeneous, meeting the homogeneity criteria recommended by the International Atomic Energy Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Umbehaun PE, Torres WM, Souza JAB et al (2018) Thermal hydraulic analysis improvement for the IEA-R1 research reactor and fuel assembly design modification. World J Nucl Sci Technol 08:54–69. https://doi.org/10.4236/wjnst.2018.82006

    Article  CAS  Google Scholar 

  2. Saxena RN (2007) The IEA-R1 research reactor: 50 years of operating experience and utilization for research, teaching and radioisotopes production. In: International conference on research reactors: safe management and effective utilization, pp 1–8

  3. Taddei MHT, Vicente R, Marumo JT et al (2013) Determination of long-lived radionuclides in radioactive wastes from the IEA-R1 nuclear research reactor. J Radioanal Nucl Chem 295:951–957. https://doi.org/10.1007/s10967-012-1865-0

    Article  CAS  Google Scholar 

  4. CNEN (2014) Norma CNEN NN 8.01 Resolução CNEN 167/14 Abril/2014. Gerência de rejeitos radioativos de baixo e médio níveis de radiação—Resolução CNEN N° 167/14. 44

  5. CNEN (2014) Norma CNEN NN 8.02 Resolução CNEN 168/14 Abril/2014. Licenciamento de depósitos de rejeitos radioativos de baixo e médio níveis de radiação

  6. International Atomic Energy Agency (IAEA) (2007) Strategy and methodology for radioactive waste characterization

  7. Moreno J, Vajda N, Danesi PR et al (1997) Combined procedure for the determination of 90Sr, 241Am and Pu radionuclides in soil samples. J Radioanal Nucl Chem 226:279–284. https://doi.org/10.1007/BF02063661

    Article  CAS  Google Scholar 

  8. Payne RF, Clark SB, Elliston JT (2008) Radioanalytical approach to determine 238Pu, 239+240Pu, 241Pu and 241Am in soils. J Radioanal Nucl Chem 277:269–274. https://doi.org/10.1007/s10967-008-0742-3

    Article  CAS  Google Scholar 

  9. Dulanská S, Remenec B, Durkot E et al (2012) Determination of 239,240Pu, 238Pu isotopes in soil samples using molecular recognition technology product AnaLig ®Pu-02 gel. J Radioanal Nucl Chem 293:847–850. https://doi.org/10.1007/s10967-012-1773-3

    Article  CAS  Google Scholar 

  10. Habibi A, Vivien C, Boulet B et al (2016) A rapid sequential separation of actinides and radiostrontium coupled to ICP-MS and gas proportional counting. J Radioanal Nucl Chem 310:217–227. https://doi.org/10.1007/s10967-016-4834-1

    Article  CAS  Google Scholar 

  11. Pulhani VA, Dafauti S, Hegde AG (2012) Separation of uranium from iron in ground water samples using ion exchange resins. J Radioanal Nucl Chem 294:299–302. https://doi.org/10.1007/s10967-011-1582-0

    Article  CAS  Google Scholar 

  12. Maxwell SL (2008) Rapid method for determination of plutonium, americium and curium in large soil samples. J Radioanal Nucl Chem 275:395–402. https://doi.org/10.1007/s10967-007-7032-3

    Article  CAS  Google Scholar 

  13. Mellado J, Llauradó M, Rauret G (2001) Determination of Pu, Am, U, Th and Sr in marine sediment by extraction chromatography. Anal Chim Acta 443:81–90. https://doi.org/10.1016/S0003-2670(01)01191-6

    Article  CAS  Google Scholar 

  14. Michel H, Barci-Funel G, Dalmasso J, Ardisson G (1999) One step ion exchange process for the radiochemical separation of americium, plutonium and neptunium in sediments. J Radioanal Nucl Chem 240:467–470. https://doi.org/10.1007/BF02349397

    Article  CAS  Google Scholar 

  15. Lee SH, La Rosa J, Gastaud J, Povinec PP (2005) The development of sequential separation methods for the analysis of actinides in sediments and biological materials using anion-exchange resins and extraction chromatography. J Radioanal Nucl Chem 263:419–425. https://doi.org/10.1007/s10967-005-0071-8

    Article  CAS  Google Scholar 

  16. Grahek Ž, Nodilo M (2012) Continuous separation of Sr, Y and some actinides by mixed solvent anion exchange and determination of 89,90Sr, 238,239Pu and 241Am in soil and vegetation samples. J Radioanal Nucl Chem 293:815–827. https://doi.org/10.1007/s10967-012-1740-z

    Article  CAS  Google Scholar 

  17. Maxwell SL, Culligan BK, Kelsey-Wall A, Shaw PJ (2012) Rapid determination of actinides in emergency food samples. J Radioanal Nucl Chem 292:339–347. https://doi.org/10.1007/s10967-011-1411-5

    Article  CAS  Google Scholar 

  18. Tölgyesi S, Gresits I, Past T, Szabó L, Volent G, Pintér T (2002) Determination of alpha-emitting isotopes in radioactive wastes of nuclear power plant Paks. J Radioanal Nucl Chem 254:357–361. https://doi.org/10.1023/A:1021692304088

    Article  Google Scholar 

  19. Chen Q, Dahlgaard H, Nielsen SP, Aarkrog A (2002) 242Pu as tracer for simultaneous determination of 237Np and 239,240Pu in environmental samples. J Radioanal Nucl Chem 253:451–458. https://doi.org/10.1023/A:1020429805654

    Article  CAS  Google Scholar 

  20. Murali MS, Bhattacharayya A, Raut DR et al (2012) Characterization of high level waste for minor actinides by chemical separation and alpha spectrometry. J Radioanal Nucl Chem 294:149–153. https://doi.org/10.1007/s10967-011-1571-3

    Article  CAS  Google Scholar 

  21. Adya VC, Sengupta A, Dhawale BA et al (2012) Recovery of americium from analytical solid waste containing large amounts of uranium, plutonium and silver. J Radioanal Nucl Chem 291:843–848. https://doi.org/10.1007/s10967-011-1360-z

    Article  CAS  Google Scholar 

  22. Dulanská S, Remenec B, Mátel L, Durkot E (2012) Rapid determination of 239,240Pu, 238Pu, 241Am and 90Sr in radioactive waste using combined SPE sorbents AnaLig® Pu02, AnaLig® Sr01 and TRU® resin. J Radioanal Nucl Chem 293:81–85. https://doi.org/10.1007/s10967-012-1727-9

    Article  CAS  Google Scholar 

  23. Tavčar P, Smodišs B, Benedik L (2007) Radiological characterization of low-and intermediate-level radioactive wastes. J Radioanal Nucl Chem 273:593–596. https://doi.org/10.1007/s10967-007-0916-4

    Article  CAS  Google Scholar 

  24. Benedik P, Tavčar L (2005) Determination of actinides and 90Sr in spent ion exchange resins. Radiochim Acta 93:623–625. https://doi.org/10.1524/ract.2005.93.9-10.623

    Article  Google Scholar 

  25. Gascón JL, Aceña ML, Suárez JA, Rodríguez M (1994) Radiochemical methods for the determination of plutonium, americium and curium in typical waste streams. J Alloys Compd 213–214:557–559. https://doi.org/10.1016/0925-8388(94)90987-3

    Article  Google Scholar 

  26. Kastner GF, Ferreira AV, Miraglia FG et al (2010) Determinação de 235U e 238U em rejeitos de atividades baixas e médias provenientes de Centrais Nucleares de Potência. Rev Bras Ciências Ambient 16:1–5

    Google Scholar 

  27. Reis AS, Temba ESC, Kastner GF, Monteiro RPG (2011) Combined procedure using radiochemical separation of plutonium, americium and uranium radionuclides for alpha-spectrometry. J Radioanal Nucl Chem 287:567–572. https://doi.org/10.1007/s10967-010-0774-3

    Article  CAS  Google Scholar 

  28. Salminen S (2009) Development of analytical methods for the separation of plutonium, americium, curium and neptunium from environmental samples. Academic Dissertation. University of Helsinki, Helsinki

  29. Ageyev VA, Odintsov OO, Sajeniouk AD (2005) Routine radiochemical method for the determination of 90Sr, 238Pu, 239+240Pu, 241Am and 244Cm in environmental samples. J Radioanal Nucl Chem 264:337–342. https://doi.org/10.1007/s10967-005-0718-5

    Article  CAS  Google Scholar 

  30. Horwitz EP, Dietz ML, Chiarizia R et al (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78. https://doi.org/10.1016/0003-2670(95)00144-O

    Article  CAS  Google Scholar 

  31. Horwitz P (1996) Extraction chromatography of actinides and selected fission products; principles and achievement of selectivity. In: International workshop on the application of extraction chromatography in radionuclide measurement

  32. Eichrom Technologies L Chromatographic resins. https://www.eichrom.com/eichrom/products/. Accessed 18 July 2019

  33. Eichrom TRU Resin. https://www.eichrom.com/eichrom/products/tru-resin/. Accessed 18 July 2019

  34. Eichrom Technologies L Sr Resin. https://www.eichrom.com/eichrom/products/sr-resin/. Accessed 18 July 2019

  35. Ikäheimonen TK (2000) Measurement of 241Pu in environmental samples. J Radioanal Nucl Chem 243:535–541

    Article  Google Scholar 

  36. Temba ESC, Reis Júnior AS, Amaral ÂM, Monteiro RPG (2011) Separation and determination of 90Sr in low- and intermediate-level radioactive wastes using extraction chromatography and LSC. J Radioanal Nucl Chem 290:631–635. https://doi.org/10.1007/s10967-011-1327-0

    Article  CAS  Google Scholar 

  37. Rosskopfová O, Galamboš M, Rajec P (2011) Determination of 63Ni in the low level solid radioactive waste. J Radioanal Nucl Chem 289:251–256. https://doi.org/10.1007/s10967-011-1071-5

    Article  CAS  Google Scholar 

  38. Taddei MHT, Macacini JF, Vicente R et al (2013) Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor. Appl Radiat Isot 77:50–55. https://doi.org/10.1016/j.apradiso.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  39. Taddei MHT, Macacini JF, Vicente R et al (2015) Determination of scaling factors to estimate the radionuclide inventory of wastes from the IEA-R1 research reactor. J Radioanal Nucl Chem 303:2467–2481. https://doi.org/10.1007/s10967-014-3789-3

    Article  CAS  Google Scholar 

  40. Helena M, Taddei T, Marumo JT et al (2011) WM2011 conference, February 27–March 3, 2011, Phoenix

  41. Nordstrom BH (1992) The elements beyond uranium (Seaborg, Glenn T.; Loveland, Walter D.). J Chem Educ 69:A34. https://doi.org/10.1021/ed069pa34

    Article  Google Scholar 

  42. Sidhu R (2006) RADCHEM radiochemical procedures for the determination of Sr, U, Pu, Am and Cm, Norway

  43. Eichrom Technologies L (2014) Analytical procedure plutonium, thorium, curium, uranium, and strontium in water, pp 12–24

Download references

Acknowledgements

The authors would like to thank the National Nuclear Energy Commission/Nuclear and Energy Research Institute (IPEN-CNEN/SP) for an institutional Grant. The authors also thank: Laboratório de Poços de CaldasLAPOC—CNEN for allowing its use during some steps of the project; Dr. Marycel E. B. Cotrim and the Laboratório de Análises Química e Ambiental (LAQA) of the Centro de Química e Meio Ambiente (CQMA) for kindly perform the nickel analyzes; and Dr. Marina F. Koskinas and the Laboratório de Metrologia Nuclear (LMN) of the Centro do Reator de Pesquisas (CRPq) for the preparation of the standard solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Goulart de Araujo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geraldo, B., de Araujo, L.G., Taddei, M.H.T. et al. Radiochemical characterization of spent filter cartridges from the primary circuit of a research reactor. J Radioanal Nucl Chem 322, 1941–1951 (2019). https://doi.org/10.1007/s10967-019-06864-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06864-4

Keywords

Navigation