Skip to main content
Log in

Electrochemical extraction of Sm(III) on active Ni electrode fabricated Sm–Ni alloys

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The reductive extraction of Sm(III) from LiCl–KCl–SmCl3 molten salts were investigated by cyclic voltammetry, square wave voltammetry and open-circuit chronopotentiometry techniques. Here, Sm–Ni alloys are prepared by molten salt electrolysis in LiCl–KCl–SmCl3 molten salt system on active Ni electrode. The physicochemical characteristics of the Sm–Ni alloys were determined by X-ray power diffraction, high-resolution transmission electron microscopy-selected area electron diffraction and X-ray photoelectron spectroscopy. The electrochemical extraction can attain about 88.5–78.5%. The results show that this method can be used to recover lanthanides from residual fission products in salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qian ZH, Liu XY, Qiao YB, Wang S, Qin Q, Shi LQ, Peng HH (2019) Effect of fluorine on stabilization/solidification of radioactive fluoride liquid waste in magnesium potassium phosphate cement. J Radioanal Nucl Chem 319(1):93–399

    Article  Google Scholar 

  2. Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y, Hu B, Wang X (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    Article  CAS  Google Scholar 

  3. Kumar S, Maji S, Sundararajan K, Sankaran K (2019) Development of a simple spectrophotometric method to estimate uranium concentration in LiCl–KCl matrix. J Radioanal Nucl Chem 320(2):337–343

    Article  CAS  Google Scholar 

  4. Han X, Wang Y, Cao X, Dai Y, Liu Y, Dong Z, Zhang Z, Liu Y (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040

    Article  CAS  Google Scholar 

  5. Zhang Z, Dong Z, Wang X, Ying D, Niu F, Cao X, Wang Y, Hua R, Liu Y, Wang X (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    Article  CAS  Google Scholar 

  6. Zhang Z, Liu J, Cao X, Luo X, Hua R, Liu Y, Yu X, He L, Liu Y (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642

    Article  CAS  PubMed  Google Scholar 

  7. Kim SW, Jeon MK, Choi EY (2019) Electrolytic behavior of SrCl2 and BaCl2 in LiCl molten salt during oxide reduction in pyroprocessing. J Radioanal Nucl Chem 321:361–365

    Article  CAS  Google Scholar 

  8. Braysher E, Russell B, Woods S, García-Miranda M, Ivanov P, Bouchard B, Read D (2019) Complete dissolution of solid matrices using automated borate fusion in support of nuclear decommissioning and production of reference materials. J Radioanal Nucl Chem 321:183–196

    Article  CAS  Google Scholar 

  9. Pillai JS, Sahu M, Chaudhury S (2018) A simple and fast fusion technique to recover plutonium embedded inside molten solidified Cu mass contained in refractory alumina crucibles. J Radioanal Nucl Chem 318(2):1419–1425

    Article  CAS  Google Scholar 

  10. Wasnik MS, Grant AK, Carlson K, Simpson MF (2019) Dechlorination of molten chloride waste salt from electrorefining via ion-exchange using pelletized ultra-stable HY zeolite in a fluidized particle reactor. J Radioanal Nucl Chem 320(2):309–322

    Article  CAS  Google Scholar 

  11. Jang J, Kim T, Eun HC, Kim GY, Lee S (2018) Uranium recovery from liquid cadmium separated from the molten salt used in electrorefining. J Radioanal Nucl Chem 318(3):1939–1947

    Article  CAS  Google Scholar 

  12. Lambert H, Kerry T, Sharrad CA (2018) Preparation of uranium (III) in a molten chloride salt: a redox mechanistic study. J Radioanal Nucl Chem 317(2):925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim GY, Kim TJ, Jang J, Eun HC, Lee SJ (2017) Formation of U–Zn alloys in the molten LiCl–KCl eutectic. J Radioanal Nucl Chem 314(1):529–532

    Article  CAS  Google Scholar 

  14. Kim DH, Park TH, Bae SE, Lee N, Kim JY, Cho YH, Song K (2016) Electrochemical preparation and spectroelectrochemical study of neptunium chloride complexes in LiCl–KCl eutectic melts. J Radioanal Nucl Chem 308(1):31–36

    Article  CAS  Google Scholar 

  15. Castrillejo Y, Fernandez P, Medina J, Hernandez P, Barrado E (2011) Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim Acta 56:8638–8644

    Article  CAS  Google Scholar 

  16. Cordoba G, Caravaca C (2004) An electrochemical study of samarium ions in the molten eutectic LiCl plus KCl. J Electroanal Chem 572:145–151

    Article  CAS  Google Scholar 

  17. Liu YL, Yuan LY, Ye GA, Zhang ML, He H, Tang HB, Shi WQ (2014) Electrochemical extraction of samarium from LiCl–KCl melt by forming Sm–Zn alloys. Electrochim Acta 120:369–378

    Article  CAS  Google Scholar 

  18. Massot L, Chamelot P, Taxil P (2005) Cathodic behaviour of samarium(III) in LiF–CaF2 media on molybdenum and nickel electrodes. Electrochim Acta 50:5510–5517

    Article  CAS  Google Scholar 

  19. Liu YH, YanY D, Zhang ML, Zheng JN, ZhaoY WP, Yin TQ, Xue Y, Jing XY, Han W (2016) Electrochemical synthesis of Sm–Ni alloy magnetic materials by Co-reduction of Sm(III) and Ni(II) in LiCl–KCl–SmCl3–NiCl2 Melt. J Electrochem Soc 163:672–681

    Article  Google Scholar 

  20. Ji DB, Yan YD, Zhang ML, Li X, Jing XY, Han W, Zhang ZJ (2015) Separation of lanthanum from samarium on solid aluminum electrode in LiCl–KCl eutectic melts. J Radioanal Nucl Chem 304(3):1123–1132

    Article  CAS  Google Scholar 

  21. Iida T, Nohira T, Ito Y (2001) Electrochemical formation of Sm–Ni alloy films in a molten LiCl–KCl–SmCl3 system. Electrochim Acta 46(16):2537–2544

    Article  CAS  Google Scholar 

  22. Yin TQ, Liang Y, Qu JM, Li P, An RF, Xue Y, Yan YD (2017) Thermodynamic and electrochemical properties of praseodymium and the formation of Ni–Pr intermetallics in LiCl–KCl melts. J Electrochem Soc 164(13):835–842

    Article  Google Scholar 

  23. Yasuda K, Kobayashi S, Nohira T (2013) Electrochemical formation of Nd–Ni alloys in molten NaCl–KCl–NdCl3. Electrochim Acta 92:349–355

    Article  CAS  Google Scholar 

  24. Yasuda K, Kobayashi S, Nohira T (2013) Electrochemical formation of Dy–Ni alloys in molten NaCl–KCl–DyCl3. Electrochim Acta 106:293–300

    Article  CAS  Google Scholar 

  25. Yasuda K, Kondo K, Nohira T, Hagiwara R (2014) Electrochemical formation of Pr–Ni alloys in LiF–CaF2–PrF3 and NaCl–KCl–PrCl3 melts. J Electrochem Soc 16:3097–3104

    Article  Google Scholar 

  26. Nassau K, Cherry LV, Wallace WE (1960) Intermetallic compounds between lanthanons and transition metals of the first long period: I—preparation, existence and structural studies. J Phys Chem Sol 16:123–130

    Article  CAS  Google Scholar 

  27. Laves F, Witte H (1936) Der Einfluß von Valenzelektronen auf die Kristallstruktur ternärer Magnesiumlegierungen. Metallwirtsch 15:840–842

    CAS  Google Scholar 

  28. Vander Voort GF (1985) Magnetic and electrical materials, vol 9. ASM International, ASM Handbook, Materials Park, pp 531–549

    Google Scholar 

  29. Roe GM, de Castilho CM, Lambert RM (1994) Structure and properties of samarium overlayers and Sm/Ni surface alloys on Ni(111). Surf Sci 301:39–51

    Article  CAS  Google Scholar 

  30. Chamelot P, Massot L, Hamel C, Nourry C, Taxil P (2007) Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent. J Radioanal Nucl Chem 360(1):64–74

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21906019, 21906018, 21561002, 21866004, 21866003), the Science and Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007), the Jiangxi Program of Academic and Technical Leaders of Major Disciplines (Grant No. 20182BCB22011), the Project of the Jiangxi Provincial Department of Education (Grant Nos. GJJ160550, GJJ180385, GJJ180400). The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhang or Yunhai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, S., Zhong, W. et al. Electrochemical extraction of Sm(III) on active Ni electrode fabricated Sm–Ni alloys. J Radioanal Nucl Chem 322, 1003–1010 (2019). https://doi.org/10.1007/s10967-019-06775-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06775-4

Keywords

Navigation