Skip to main content
Log in

Radiation exposure to zircon minerals in Serbian ceramic industries

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the results of gamma spectrometric measurements of radioactivity levels for 41 zircon minerals samples used in the Serbian ceramic industry. The average activity concentrations of 226Ra, 232Th and 40K for all analyzed samples are 2532 ± 117 Bq kg−1, 360 ± 16 Bq kg−1, and 183 ± 12 Bq kg−1, respectively. Radium equivalent activity index (Raeq), gamma and alpha indices (Iγ, Iα), excess lifetime cancer risk, alpha dose equivalent (Hα), and radon mass exhalation rate (EM) are determined. Annual effective doses for workers in the ceramic industry are estimated assuming exposure to radiation for 800 h per year, and the average value is found to be 1.53 ± 0.07 mSv y−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muntean LE, Cosma C, Moldovan DV (2014) Measurement of natural radioactivity and radiation hazards for some natural and artificial building materials available in Romania. J Radioanal Nucl Chem 299:523–532. https://doi.org/10.1007/s10967-013-2837-8

    Article  CAS  Google Scholar 

  2. Chang BU, Koh SM, Kim YJ, Seo JS, Yoon YY, Row JW, Lee DM (2008) Nationwide survey on the natural radionuclides in industrial raw minerals in South Korea. J Environ Radioact 99:455–460. https://doi.org/10.1016/j.jenvrad.2007.08.020

    Article  CAS  PubMed  Google Scholar 

  3. El Afifi EM, Hilal MA, Khalifa SM, Aly HF (2006) Evaluation of U, Th, K and emanated radon in some NORM and TENORM samples. Radiat Meas 41:627–633. https://doi.org/10.1016/j.radmeas.2005.09.014

    Article  CAS  Google Scholar 

  4. Turhan S, Arıkan IH, Demirel H, Gungor N (2011) Radiometric analysis of raw materials and end products in the Turkish ceramics industry. Radiat Phys Chem 80:620–625. https://doi.org/10.1016/j.radphyschem.2011.01.007

    Article  CAS  Google Scholar 

  5. Todorovic N, Mrdja D, Hansman J, Todorovic S, Nikolov J, Krmar M (2017) Radiological impacts assessment for workers in ceramic industry in Serbia. Radiat Prot Dosim 176:411–417. https://doi.org/10.1093/rpd/ncx025

    Article  CAS  Google Scholar 

  6. Xinwei L (2004) Natural radioactivity in some building materials and by-products of Shaanxi, China. J Radioanal Nucl Chem 262:775–777. https://doi.org/10.1007/s10967-004-0509-4

    Article  CAS  Google Scholar 

  7. Attallah MF, Hilal MA, Moussa SI (2017) Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy. Appl Radiat Isot 128:224–230. https://doi.org/10.1016/j.apradiso.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  8. Chao S, Lu X, Zhang M, Pang L (2014) Natural radioactivity level and radiological hazard assessment of commonly used building material in Xining, China. J Radioanal Nucl Chem 300:879–888. https://doi.org/10.1007/s10967-014-3065-6

    Article  CAS  Google Scholar 

  9. UNSCEAR (1993) Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  10. Commission European (1999) Radiation protection 112—radiological protection principles concerning the natural radioactivity of building materials. EC, Luxembourg

    Google Scholar 

  11. Council Directive 2013/59/Euratom of 5 Dec. 2013 (2014) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. L13, vol 57. ISSN: 1977-0677. https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf

  12. Schroeyers W (2017) Naturally occurring radioactive materials in construction—integrating radiation protection in reuse (COST Action Tu1301 NORM4BUILDING). Woodhead Publishing, Cambridge. https://doi.org/10.1016/C2016-0-00665-4

    Book  Google Scholar 

  13. Righi S, Andretta M, Bruzzi L (2005) Assessment of the radiological impacts of a zircon sand processing plant. J Environ Radioact 82:237–250. https://doi.org/10.1016/j.jenvrad.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  14. Ballesteros L, Zarza I, Ortiz J, Serradell V (2008) Occupational exposure to natural radioactivity in a zircon sand milling plant. J Environ Radioact 99:1525–1529. https://doi.org/10.1016/j.jenvrad.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  15. Crespo MT, Peyres V, Jose Ortiz M, Gomez-Mancebo MB, Sanchez M (2018) Dissolution and radioactive characterization of resistate zircon sand. J Radioanal Nucl Chem 318:1043–1105. https://doi.org/10.1007/s10967-018-6214-5

    Article  CAS  Google Scholar 

  16. Todorović N, Bikit I, Krmar M, Mrđa D, Hansman J, Nikolov J, Todorović S, Forkapić S, Jovančević N, Bikit K, Janković Mandić L (2016) Assessment of radiological significance of building materials and residues. Rom J Phys 62(9–10):817

    Google Scholar 

  17. International Atomic Energy Agency (2007) Radiation protection and NORM residue management in the zircon and zirconia industries. Safety reports ser. no. 51, Vienna, Austria. https://www.iaea.org/publications/7673/radiation-protection-and-norm-residue-management-in-the-zircon-and-zirconia-industries

  18. World Health Organization (2009) In: Zeeb H, Shannoun F (eds) Handbook on indoor radon: a public health perspective. WHO Library Cataloguing-in-Publication Data, World Health Organization, Geneva

    Google Scholar 

  19. Fathivand AA, Amidi J (2009) Natural radioactivity concentration in raw materials used for manufacturing refractory products. Radioprotection 44:265–268. https://doi.org/10.1051/radiopro/20095051

    Article  Google Scholar 

  20. Todorovic N, Forkapic S, Bikit I, Mrdja D, Veskovic M, Todorovic S (2011) Monitoring for exposures to TENORM sources in Vojvodina region. Radiat Prot Dosim 144:655–658. https://doi.org/10.1093/rpd/ncq414

    Article  CAS  Google Scholar 

  21. Kuzmanović P, Todorović N, Nikolov J, Hansman J, Vraničar A, Knežević J, Miljević B (2019) Assessment of radiation risk and radon exhalation rate for granite used in the construction industry. J Radioanal Nucl Chem 321:565–577. https://doi.org/10.1007/s10967-019-06592-9

    Article  CAS  Google Scholar 

  22. International Atomic Energy Agency (1989) Measurement of radionuclides in food and the environment. Technical reports series no. 295, Vienna, Austria

  23. Todorovic N, Hansman J, Mrđa D, Nikolov J, Krmar M (2017) Concentrations of 226Ra, 232Th and 40K in industrial kaolinized granite. J Environ Radioact 168:10–14. https://doi.org/10.1016/j.jenvrad.2016.07.032

    Article  CAS  PubMed  Google Scholar 

  24. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial waste sand by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  25. NEA-OECD (1979) Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials. Reported by NEA group of experts. OECD, Paris

  26. UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on Effects of Atomic Radiation. Exposures from natural radiation sources, Annex B. United Nations Publication, New York

  27. Ozdis BE, Cam NF, Canbaz OB (2017) Assessment of natural radioactivity in cements used as building materials in Turkey. J Radioanal Nucl Chem 311:307–316. https://doi.org/10.1007/s10967-016-5074-0

    Article  CAS  Google Scholar 

  28. UNSCEAR (2008) Sources and effects of ionizing radiation. Report to the general assembly with scientific annexes. United Nations Scientific Committee on the Effects of Atomic Radiation, Annex A and B, United Nations, New York, USA

  29. Official Gazette RS 86/2011 and 50/2018 (2018) Rulebook on limits of exposure to ionizing radiation and measurements for assessment of the exposure levels (in Serbian)

  30. International Commission on Radiological Protection (1990) Recommendations of the international commission on radiological protection. ICRP Publication 60, Pergamon Press, Oxford

    Google Scholar 

  31. European Commission (1990) Commission recommendation of February 1990 on the protection of the public against indoor exposure to radon (90/143/Euroatom)

  32. Bruzzi L, Mele R, Padoani F (1992) Evaluation of gamma and alpha doses due to natural radioactivity of building materials. J Radiol Prot 12:67–76. https://doi.org/10.1088/0952-4746/12/2/002

    Article  Google Scholar 

  33. Chowdhury MI, Alam MN, Ahmed AKS (1998) Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation of radiation hazard. J Radioanal Nucl Chem 231:117–122. https://doi.org/10.1007/BF02388016

    Article  CAS  Google Scholar 

  34. Aykamis AS, Turhan S, Aysun Ugur F, Baykan UN, Kilic AM (2013) Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey. Radiat Prot Dosim 157:105–111. https://doi.org/10.1093/rpd/nct110

    Article  CAS  Google Scholar 

  35. Madruga MJ, Miró C, Reis M, Silva L (2018) Radiation exposure from natural radionuclides in building materials. Radiat Prot Dosim. https://doi.org/10.1093/rpd/ncy256

    Article  Google Scholar 

  36. Viruthagiri G, Rajamannan B, Suresh Jawahar K (2013) Radioactivity and associated radiation hazards in ceramic raw materials and end products. Radiat Prot Dosim 157:383–391. https://doi.org/10.1093/rpd/nct149

    Article  CAS  Google Scholar 

  37. Bikit I, Mrda D, Grujic S, Kozmidis-Luburic U (2011) Granulation effects on the radon emanation rate. Radiat Prot Dosim 145:184–188. https://doi.org/10.1093/rpd/ncr055

    Article  CAS  Google Scholar 

  38. Hassan NM, Mansour NA, Fayez-Hassan M (2013) Evaluation of radionuclide concentrations and associated radiological hazard indexes in building materials used in Egypt. Radiat Prot Dosim 157:214–220. https://doi.org/10.1093/rpd/nct129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of Serbia, within the projects Nuclear Methods Investigations of Rare Processes and Cosmic No. 171002, Biosensing Technologies and Global System for Continues Research and Integrated Management No. 43002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Todorović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, P., Todorović, N., Mrđa, D. et al. Radiation exposure to zircon minerals in Serbian ceramic industries. J Radioanal Nucl Chem 322, 949–960 (2019). https://doi.org/10.1007/s10967-019-06743-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06743-y

Keywords

Navigation