Skip to main content
Log in

Study on effect of sodium based buffers on the isotopic measurement of boron using Na2BO2+ by thermal ionization mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Alkali metaborate ions are usually monitored for the isotopic measurement of boron by positive thermal ionization mass spectrometry. Large variations in the of 10B/11B isotopic ratios are observed with the change in the mole ratios of B/Na when sodium carbonate solutions are added when compared with solution of neutral salt of sodium (NaCl). To understand the reason for the variations observed in the isotopic ratio of 10B/11B with the change in the mole ratio of B/Na, various sodium containing buffers effective in the pH range 3–9 were employed in the present studies instead of the conventionally used sodium carbonate for formation of Na2BO2+ ions in the ion source. NIST SRM-951 having certified 10B/11B ratio 0.2473 ± 0.0002 was used for all isotopic measurements by TIMS. It could be concluded that irrespective of the pH, the foremost reason for variations in the isotopic ratio of 10B/11B is the amount of Na present as Na2O on the filament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hemming NG, Hanson GN (1994) A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry. Chem Geol 114:147

    Article  CAS  Google Scholar 

  2. Shen JJ, You CF (2003) A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry. Anal Chem 75:1972

    Article  CAS  Google Scholar 

  3. Foster GL, Ni Y, Haley B, Elliott T (2006) Accurate and precise measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS. Chem Geol 230:161

    Article  CAS  Google Scholar 

  4. Aggarwal SK et al (2009) Fractionation correction methodology for precise and accurate isotopic analysis of boron by negative thermal ionization mass spectrometry based on BO(−)2 ions and using the 18O/16O ratio from ReO(−)4 for internal normalization. Anal Chem 81(17):7420–7427

    Article  CAS  Google Scholar 

  5. Joachim Volkeninget al (1991) Osmium isotope determinations by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 105(2):147–159

    Article  Google Scholar 

  6. Alamelu D et al (2004) Investigations on atomic and oxide ion formation of plutonium and uranium in thermal ionization mass spectrometry (TIMS) for the determination of 238Pu. Int J Mass Spectrom 239:51–56

    Article  CAS  Google Scholar 

  7. Datta BP et al (1992) Thermal ionization mass spectrometry of Li2BO2+ ions; determination of isotopic abundance ratio of lithium. Int J Mass Spectrom Ion Processes 116:87–114

    Article  CAS  Google Scholar 

  8. Datta BP et al (1993) Molecular ion beam method of isotopic analysis: effect of error propagation, a case study with Li2BO2+. Rapid Commun Mass Spectrom 7:581–586

    Article  CAS  Google Scholar 

  9. Sahoo SK (1995) Simultaneous measurement of lithium and boron isotopes as lithium tetraborate ion by thermal ionization mass spectrometry. Analyst 120:335–339

    Article  CAS  Google Scholar 

  10. Datta BP et al (2000) Error-systematics of determining elemental isotopic abundance ratios by the molecular ion beam method: a case study for the simultaneous isotopic analysis of lithium and boron as Li2BO2+. Rapid Commun Mass Spectrom 14:696–705

    Article  CAS  Google Scholar 

  11. Datta BP et al (2000) Error-systematics of determining simultaneously the isotopic abundance ratios of natural lithium and natural boron as Li2BO2+. Rapid Commun Mass Spectrom 14:706–718

    Article  CAS  Google Scholar 

  12. Sasi Bhushan K et al (2016) Simultaneous determination of non-natural isotopic composition of Li and B employing Li2BO2+ by thermal ionisation mass spectrometry. Int J Mass Spectrom 406:20–28

    Article  Google Scholar 

  13. Rao RM et al (2011) High precision isotope ratio measurements on boron by thermal ionization mass spectrometry using Rb2BO2+ ion. Anal Methods 3:322–327

    Article  CAS  Google Scholar 

  14. Rao RM et al (2009) A robust methodology for high precision isotopic analysis of boron by thermal ionization mass spectrometry using Na2BO2+ ion. Int J Mass Spectrom 285:120–125

    Article  CAS  Google Scholar 

  15. Catanzaro EJ et al (1970) Nat Bur Stand (US) Spec Publ 17:260–277

    Google Scholar 

  16. Rao RM et al (2014) Role of graphite in isotopic analysis of boron in metal boron alloys positive-thermal ionization mass spectrometry (P-TIMS). Int J Mass Spectrom 364:21–24

    Article  CAS  Google Scholar 

  17. Rao RM et al (2010) Determination of ultratrace boron concentration in uranium oxide by isotope dilution-thermal ionization mass spectrometry using a simplified separation procedure. Microchim Acta 169:227–231

    Article  CAS  Google Scholar 

  18. Mann JL, Robert Kelly W (2005) Measurement of sulfur isotope composition (δ34S) by multiple-collector thermal ionization mass spectrometry using a 33S–36S double spike. Rapid Commun Mass Spectrom 19:3429–3441

    Article  CAS  Google Scholar 

  19. Aggarwal SK, You C-F (2016) A review on the determination of isotope ratios of boron with mass spectrometry. Mass Spectrom Rev 9999:1–21

    Google Scholar 

  20. Mathew KJ, Hasozbek A (2016) Comparison of mass spectrometric methods (TE, MTE and conventional) for uranium isotope ratio measurements. J Radioanal Nucl Chem 307:1681–1687

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika M. Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasi Bhushan, K., Rao, R.M., Goswami, P.G. et al. Study on effect of sodium based buffers on the isotopic measurement of boron using Na2BO2+ by thermal ionization mass spectrometry. J Radioanal Nucl Chem 323, 1367–1372 (2020). https://doi.org/10.1007/s10967-019-06741-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06741-0

Keywords

Navigation