Skip to main content
Log in

Rapid activation product separations from fission products and soil matrixes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A rapid method for the separation and qualitative analysis of several neutron activation products (198Au, 192Ir, 72Ga, 51Cr, 191/195m/197Pt, 54Mn, 57Co, and 59Fe) from fission products and soil matrixes has been developed. Analytes were isolated within 20 h using ion exchange chromatography. After separation, the activation products were characterized by γ-spectroscopy and inductively coupled plasma-optical emission spectroscopy. Validation experiments demonstrated versatility of the method, showing that the activation products could be isolated from fresh fission products and other contaminants associated with complex soil matrixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If Pb does not completely precipitate during the Pb precipitation step, it co-elutes with Co.

  2. In the presence of soil matrix, Fe recoveries are not reproducible. In the absence of soil matrix, Fe recoveries were determined by ICP-OES to be near quantitative.

References

  1. Horan JR (1963) The health physics aspects of the SL-1 accident. Health Phys 9:177–186

    Article  CAS  Google Scholar 

  2. Mitsugashira T, Hara M, Nakanishi T et al (2000) Passive gamma-ray spectrometry for the determination of total fission events in the JCO criticality accident’99 in Tokai. J Environ Radioact 50:21–26. https://doi.org/10.1016/S0265-931X(00)00056-4

    Article  CAS  Google Scholar 

  3. Imanaka T (2000) Neutron dose and power released by the JCO criticality accident in Tokai-mura. J Environ Radioact 50:15–20. https://doi.org/10.1016/S0265-931X(00)00055-2

    Article  CAS  Google Scholar 

  4. Furuta K, Sasou K, Kubota R et al (2000) Human factor analysis of JCO criticality accident. Cogn Technol Work 2:182–203. https://doi.org/10.1007/PL00011501

    Article  Google Scholar 

  5. Komura K, Yamamoto M, Muroyama T et al (2000) The JCO criticality accident at Tokai-mura, Japan: an overview of the sampling campaign and preliminary results. J Environ Radioact 50:3–14. https://doi.org/10.1016/S0265-931X(00)00054-0

    Article  CAS  Google Scholar 

  6. Komura K, Yousef AM, Murata Y et al (2000) Activation of gold by the neutrons from the JCO accident. J Environ Radioact 50:77–82. https://doi.org/10.1016/S0265-931X(00)00064-3

    Article  CAS  Google Scholar 

  7. Takada J, Hoshi M (2000) External doses to 350 m zone residents around the Tokai-mura criticality accident site. J Environ Radioact 50:43–48. https://doi.org/10.1016/S0265-931X(00)00059-X

    Article  CAS  Google Scholar 

  8. Imanaka T (2001) Transport calculation of neutrons leaked to the surroundings of the facilities by the JCO criticality accident in Tokai-mura. J Radiat Res 42:S31–S44. https://doi.org/10.1269/jrr.42.S31

    Article  PubMed  Google Scholar 

  9. Tanaka S-I (2001) Summary of the JCO criticality accident in Tokai-mura and a dose assessment. J Radiat Res 42:S1–S9. https://doi.org/10.1269/jrr.42.S1

    Article  PubMed  Google Scholar 

  10. Selby JM, Moeller DW, Vallario EJ, Stephan JG (1986) Use of radiological accident experience in establishing appropriate perspectives in emergency planning. In: ANS topical meeting on radiological accidents—perspectives and emergency planning. Bethesda

  11. McLaughlin TP, Monahan SP, Pruvost NL et al (2000) A review of criticality accidents. Los Alamos Lab, Los Alamos

    Book  Google Scholar 

  12. Inaba J (2000) Radiological and environmental aspects of the criticality accident in Tokai-mura. Radiat Prot Dosimetry 92:239–246. https://doi.org/10.1093/oxfordjournals.rpd.a033277

    Article  CAS  Google Scholar 

  13. Napier BA, Schmieman EA, Voitsekovitch O (2007) Radioactive waste management and environmental contamination issues at the Chernobyl site. Health Phys 93:441–451. https://doi.org/10.1097/01.HP.0000279602.34009.e3

    Article  CAS  PubMed  Google Scholar 

  14. Podlazov LN, Trekhov VE, Cherkashov YM et al (1994) Computational modeling of the accident in the fourth power-generating unit of the chernobyl nuclear power plant. At Energy 77:580–587. https://doi.org/10.1007/BF02407430

    Article  Google Scholar 

  15. Kofuji H, Komura K, Yamada Y, Yamamoto M (2000) An estimation of fast neutron flux by reaction. J Environ Radioact 50:49–54. https://doi.org/10.1016/S0265-931X(00)00060-6

    Article  CAS  Google Scholar 

  16. Muroyama T, Murata Y, Kofuji H et al (2000) Neutron activation of chemical reagents exposed to the neutrons released by the JCO criticality accident. J Environ Radioact 50:55–59. https://doi.org/10.1016/S0265-931X(00)00061-8

    Article  CAS  Google Scholar 

  17. Evans JC, Lepel EL, Sanders RW et al (1984) Long-lived activation products in reactor materials. Pacific Northwest Lab, Richland

    Book  Google Scholar 

  18. Buesseler K, Aoyama M, Fukasawa M (2011) Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ Sci Technol 45:9931–9935. https://doi.org/10.1021/es202816c

    Article  CAS  PubMed  Google Scholar 

  19. Shozugawa K, Nogawa N, Matsuo M (2012) Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ Pollut 163:243–247. https://doi.org/10.1016/j.envpol.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  20. Schwantes JM, Orton CR, Clark RA (2012) Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel. Environ Sci Technol 46:8621–8627. https://doi.org/10.1021/es300556m

    Article  CAS  PubMed  Google Scholar 

  21. Mattsson S, Finck R, Nilsson M (1980) Distribution of activation products from barsebäck nuclear power plant (Sweden) in the marine environment. Temporal and spatial variations as established by seaweed. Environ Pollut Ser B Chem Phys 1:105–115. https://doi.org/10.1016/0143-148X(80)90031-2

    Article  CAS  Google Scholar 

  22. Le Petit G, Douysset G, Ducros G et al (2014) Analysis of radionuclide releases from the Fukushima Dai-Ichi nuclear power plant accident part I. Pure appl Geophys 171:629–644. https://doi.org/10.1007/s00024-012-0581-6

    Article  Google Scholar 

  23. Achim P, Monfort M, Le Petit G et al (2014) Analysis of radionuclide releases from the Fukushima Dai-ichi nuclear power plant accident part II. Pure appl Geophys 171:645–667. https://doi.org/10.1007/s00024-012-0578-1

    Article  Google Scholar 

  24. Donaldson LR, Seymour AH, Nevissi AE (1997) University of Washingtonʼs radioecological studies in the Marshall Islands, 1946–1977. Health Phys 73:214–222. https://doi.org/10.1097/00004032-199707000-00018

    Article  CAS  PubMed  Google Scholar 

  25. Oughton DH, Day JP (1993) Determination of cesium, rubidium and scandium in biological and environmental materials by neutron activation analysis. J Radioanal Nucl Chem Artic 174:177–185. https://doi.org/10.1007/BF02040345

    Article  CAS  Google Scholar 

  26. Inaba J (2015) Environmental transfer parameters of radionuclides. Radioisotopes 64:335–349. https://doi.org/10.3769/radioisotopes.64.335

    Article  CAS  Google Scholar 

  27. Warren GA, Runkle RC (2013) New concepts for radiometric measurements of environmental samples. J Radioanal Nucl Chem 296:829–833. https://doi.org/10.1007/s10967-012-2133-z

    Article  CAS  Google Scholar 

  28. Winkler SR, Steier P, Carilli J (2012) Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core. Earth Planet Sci Lett 359–360:124–130. https://doi.org/10.1016/j.epsl.2012.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Biegalski SR, Bowyer TW, Eslinger PW et al (2012) Analysis of data from sensitive U.S. monitoring stations for the Fukushima Dai-ichi nuclear reactor accident. J Environ Radioact 114:15–21. https://doi.org/10.1016/j.jenvrad.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  30. Thakur P, Ballard S, Nelson R (2013) An overview of Fukushima radionuclides measured in the northern hemisphere. Sci Total Environ 458–460:577–613. https://doi.org/10.1016/j.scitotenv.2013.03.105

    Article  CAS  PubMed  Google Scholar 

  31. Quinto F, Golser R, Lagos M et al (2015) Accelerator mass spectrometry of actinides in ground- and seawater: an innovative method allowing for the simultaneous analysis of U, Np, Pu, Am, and Cm Isotopes below ppq levels. Anal Chem 87:5766–5773. https://doi.org/10.1021/acs.analchem.5b00980

    Article  CAS  PubMed  Google Scholar 

  32. Froehlich MB, Tims SG, Fallon SJ et al (2017) Nuclear weapons produced 236 U, 239 Pu and 240 Pu archived in a Porites Lutea coral from Enewetak Atoll. J Environ Radioact 178–179:349–353. https://doi.org/10.1016/j.jenvrad.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  33. De Cesare M, De Cesare N, D’Onofrio A et al (2015) Mass and abundance 236 U sensitivities at CIRCE. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 361:483–487. https://doi.org/10.1016/j.nimb.2015.05.029

    Article  CAS  Google Scholar 

  34. De Cesare M, Gialanella L, Rogalla D et al (2010) Actinides AMS at CIRCE in Caserta (Italy). Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 268:779–783. https://doi.org/10.1016/j.nimb.2009.10.029

    Article  CAS  Google Scholar 

  35. Mahara Y, Kudo A (1995) Plutonium released by the Nagasaki A-bomb: mobility in the environment. Appl Radiat Isot 46:1191–1201. https://doi.org/10.1016/0969-8043(95)00161-6

    Article  CAS  Google Scholar 

  36. Yuanzhong L, Jianzhu C (2002) Fission product release and its environment impact for normal reactor operations and for relevant accidents. Nucl Eng Des 218:81–90. https://doi.org/10.1016/S0029-5493(02)00200-5

    Article  Google Scholar 

  37. Tadmor J (1976) Determination of the type and amount of fission products released in a nuclear reactor accident. Health Phys 30:95–112. https://doi.org/10.1097/00004032-197601000-00011

    Article  CAS  PubMed  Google Scholar 

  38. Hanson SK, Pollington AD, Waidmann CR et al (2016) Measurements of extinct fission products in nuclear bomb debris: determination of the yield of the Trinity nuclear test 70 y later. Proc Natl Acad Sci 113:8104–8108. https://doi.org/10.1073/pnas.1602792113

    Article  CAS  PubMed  Google Scholar 

  39. Goldstein SJ, Hinrichs KA, Nunn AJ et al (2018) Sequential chemical separations and multiple ion counting ICP-MS for 241Pu–241Am–237Np dating of environmental collections on a single aliquot. J Radioanal Nucl Chem 318:695–701. https://doi.org/10.1073/pnas.1602792113

    Article  CAS  Google Scholar 

  40. Morrison SS (2015) Activation product analysis in the presence of fission products. Washington State University, Pullman

    Google Scholar 

  41. Kleinberg J (1990) Collected radiochemical and geochemical procedures. Los Alamos National Lab, Los Alamos

    Book  Google Scholar 

  42. Dams R, Hoste J (1961) Gravimetric determination of tungsten by homogeneous precipitation. Talanta 8:664–672. https://doi.org/10.1016/0039-9140(61)80163-X

    Article  CAS  Google Scholar 

  43. Willard HH, Goodspeed EW (1936) Separation of strontium, Barium, and lead from calcium and other metals—by precipitation as nitrates. Ind Eng Chem Anal Ed 8:414–418. https://doi.org/10.1021/ac50104a003

    Article  CAS  Google Scholar 

  44. Laue CA, Gates-Anderson D, Fitch TE (2004) Dissolution of metallic uranium and its alloys. J Radioanal Nucl Chem 261:709–717. https://doi.org/10.1023/B:JRNC.0000037117.01721.f1

    Article  CAS  Google Scholar 

  45. Gao J, Manard BT, Castro A et al (2017) Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials. Talanta 167:8–13. https://doi.org/10.1016/j.talanta.2017.01.080

    Article  CAS  PubMed  Google Scholar 

  46. Montoya DP, Manard BT, Xu N (2016) Novel sample introduction system to reduce ICP-OES sample size for plutonium metal trace impurity determination. J Radioanal Nucl Chem 307:2009–2014. https://doi.org/10.1007/s10967-015-4648-6

    Article  CAS  Google Scholar 

  47. Korob RO, Cohen IM, Agatiello OE (1976) Tungsten and molybdenum co-precipitation by α-benzoinoxime for activation analysis of tungsten. J Radioanal Chem 34:329–333. https://doi.org/10.1007/BF02519582

    Article  CAS  Google Scholar 

  48. Knowles HB (1932) The use of alpha-benzoinoxime in the determination of molybdenum. Bur Stand J Res 9:1–8. https://doi.org/10.1016/S0016-0032(13)90386-0

    Article  CAS  Google Scholar 

  49. Yagoda H, Fales HA (1938) Studies on the analytical chemistry of Tungsten and Molybdenum. II. J Am Chem Soc 60:640–643. https://doi.org/10.1021/ja01270a041

    Article  CAS  Google Scholar 

  50. Taylor-Austin E (1937) The determination of molybdenum in cast iron. Analyst 62:107–117

    Article  CAS  Google Scholar 

  51. Borgarello E, Serpone N, Emo G et al (1986) Light-induced reduction of rhodium(III) and palladium(II) on titanium dioxide dispersions and the selective photochemical separation and recovery of gold(III), platinum(IV), and rhodium(III) in chloride media. Inorg Chem 25:4499–4503. https://doi.org/10.1021/ic00245a010

    Article  CAS  Google Scholar 

  52. Torigoe K, Esumi K (1992) Preparation of colloidal gold by photoreduction of tetracyanoaurate(1-)-cationic surfactant complexes. Langmuir 8:59–63. https://doi.org/10.1021/la00037a013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the Defense Threat Reduction Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela C. Olson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, K.T., Kozimor, S.A., Manard, B.T. et al. Rapid activation product separations from fission products and soil matrixes. J Radioanal Nucl Chem 322, 281–289 (2019). https://doi.org/10.1007/s10967-019-06678-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06678-4

Keywords

Navigation