Skip to main content
Log in

Reduction of uranium triiodide to metal by thermal decomposition

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium metal was successfully produced from uranium triiodide through thermal decomposition in a tetra-arc crystal furnace. The uranium triiodide was produced by reacting uranium and iodine at 600 °C for 24 h. After the uranium triiodide was heated in the arc furnace, a product was confirmed to be uranium metal through X-ray diffraction, density, and energy-dispersive X-ray spectroscopy measurements. Historically, uranium triiodide has been reduced after passing through a gaseous intermediate of uranium tetraiodide and reduced on a hot filament. This is the first report of directly reducing uranium triiodide to uranium metal, circumventing the uranium tetraiodide intermediary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clark DL, Hecker SS, Jarvinen GD, Neu MP (2006) In: Morss L, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 2, 3rd edn. Springer, Berlin, p 813

    Chapter  Google Scholar 

  2. Klaproth MH (1789) Chemische Untersuchung des Uranits, einer neuentdeckten metallische Substanz. Chem Ann Freunde Naturl 2:387–403

    Google Scholar 

  3. Peligot ME (1841) Recherches sur l’Urane. J Pharm 27:525–535

    Google Scholar 

  4. Harrington CD, Ruehle AE (1959) Uranium production technology. D. Van Nostrand Co., Inc., Princeton

    Google Scholar 

  5. Wilhelm HA (1960) Development of uranium metal production in America. J Chem Ed 37:56–68

    Article  CAS  Google Scholar 

  6. Murasik A, Fischer P, Furrer A, Schmid B (1986) Magnetic phase transitions and crystal field splitting of uranium halide (UX3) compounds (X ident. chloride, bromide, iodide) investigated by neutron scattering. J Less Common Met 121:151–155

    Article  CAS  Google Scholar 

  7. Orman S (1976) Oxidation of uranium and uranium alloys in physical metallurgy of uranium alloys. Brook Hill Pub Co., Chestnut Hill

    Google Scholar 

  8. Driggs FH, Lilliendahl WC (1930) Preparation of metal powders by electrolysis of fused salts. I. Ductile uranium. Ind Eng Chem 22:516–519

    Article  CAS  Google Scholar 

  9. Kim S-W, Lee S-K, Kang HW, Choi E-Y, Park W, Hong S-S, Oh S-C, Hur J-M (2017) Electrochemical properties of noble metal anodes for electrolytic reduction of uranium oxide. J Radioannal Nucl Chem 311:809–814

    Article  CAS  Google Scholar 

  10. Gibilaro M, Cassayre L, Lemoine O, Massot L, Dugne O, Malmbeck R, Chamelot P (2011) Direct electrochemical reduction of solid uranium oxide in molten fluoride salts. J Nucl Mater 414:169–173

    Article  CAS  Google Scholar 

  11. Vishnu DSM, Sanil N, Panneerselvam G, Sudha R, Mohandas KS, Nagarajan K (2013) Mechanism of direct electrochemical reduction of solid UO2 to uranium metal in CaCl2-48 mol% NaCl melt. J Electochem Soc 160:D394–D402

    Article  CAS  Google Scholar 

  12. van Arkel A (1943) Rein metalle. Edwards Brothers, Inc., Ann Arbor

    Google Scholar 

  13. Katz JJ, Rabinowtich E (1951) The chemistry of uranium. McGraw-Hill, New York

    Google Scholar 

  14. Prescott, Reynolds (1943) The preparation of uranium metal by the hot-wire method. Report Chem-S-206

  15. Bagnall K, Brown D, Jones P, du Preez J (1965) Iodo complexes of thorium(IV) and uranium(IV). J Chem Soc 350–353

  16. Brown D, Edwards J (1972) Preparation and crystallographic properties of the trichlorides, tribromides, and triiodides of uranium, neptunium, and plutonium. J Chem Soc, Dalton Trans 16:1757–1762

    Article  Google Scholar 

  17. Evans W, Kozimor S, Ziller J, Fagin A, Bochkarev MN (2005) Facile syntheses of unsolvated UI3 and tetramethylcyclopentadienyl uranium halides. Inorg Chem 44:3993–4000

    Article  CAS  PubMed  Google Scholar 

  18. Gregory NW (1958) Preparation and properties of the uranium halides (other than the fluorides). U.S. Report TID-5290

  19. Rudel S, Kraus F (2017) Facile syntheses of pure uranium halides: UCl4, UBr 4, and UI4. Dalton Trans 46:5835–5842

    Article  CAS  PubMed  Google Scholar 

  20. Toby B, Dreele R (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549

    Article  CAS  Google Scholar 

  21. Wyckoff RWG (1963) Crystal structures. Interscience Publisher, New York

    Google Scholar 

  22. Levy J, Taylor J, Wilson P (1975) Structure of uranium(III) triiodide by neutron diffraction. Acta Crystallogr Sect B B31:880–882

    Article  CAS  Google Scholar 

  23. Levy J, Taylor J, Waugh A (1980) Crystal structure of uranium (IV) tetraiodide by X-ray and neutron diffraction. Inorg Chem 19:672–674

    Article  CAS  Google Scholar 

  24. Murasik A, Fischer P, Szcepaniak W (1981) Neutron diffraction study of long-range antiferromagnetic order and crystal structure of uranium(III) triiodide. J Phys C: Solid State Phys 14:1847–1854

    Article  CAS  Google Scholar 

  25. Morss L, Edelstein N, Fuger J (2010) The chemistry of the actinide and transactinide elements. Springer, Dordrecht

    Google Scholar 

  26. Roberts L, Murray R (1955) Magnetic and thermal properties of uranium iodide at liquid-helium temperatures. Phys Rev 100:650–654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 18-SI-001. LLNL release number LLNL-JRNL-768061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Holliday.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lawrence Livermore National Laboratory: This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idell, Y.S., Holliday, K.S., Stillwell, R.L. et al. Reduction of uranium triiodide to metal by thermal decomposition. J Radioanal Nucl Chem 320, 793–800 (2019). https://doi.org/10.1007/s10967-019-06541-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06541-6

Keywords

Navigation