Skip to main content
Log in

Analytical chemistry of nuclear material: case studies from Los Alamos National Laboratory

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Presented here are three case studies that demonstrate the breadth of bulk actinide analytical chemistry at Los Alamos National Laboratory (LANL). This laboratory was established during the Manhattan Project and is still considered one of the premier analytical laboratories for special nuclear materials characterization around the globe. First, the analytical chemistry of 238Pu is presented, showcasing the unique challenges of this high activity isotope. Next, the analysis of 241AmO2 is discussed from the perspective of supporting nascent production at LANL. Finally, the analytical chemistry support of the production of plutonium non-destructive assay standards is discussed. These examples paint a picture of the analytical capabilities needed to meet the dynamic challenges of LANL’s nuclear programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Truslow EC (1973) Manhattan District history. Nonscientific aspects of Los Alamos Project Y, 1942–1946. Los Alamos Scientific Laboratory, Los Alamos

    Book  Google Scholar 

  2. Hutcheon ID, Grant PM, Moody KJ (2010) Nuclear forensic materials and methods. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F (eds) Handbook of nuclear chemistry, vol 6, 2nd edn. Nuclear energy production and safety issues. Springer, New York, pp 2837–2892

    Google Scholar 

  3. Zendel M, Donohue DL, Kuhn E, Deron S, Bíro T (2010) Nuclear safeguards verification measurement techniques. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F (eds) Handbook of nuclear chemistry, vol 6, 2nd edn. Nuclear energy production and safety issues. Springer, New York, pp 2893–3002

    Google Scholar 

  4. Callis EL, Abernathey RM (1991) High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom Ion Process 103(2):93–105. https://doi.org/10.1016/0168-1176(91)80081-W

    Article  CAS  Google Scholar 

  5. ASTM (1987) Plasma spectroscopy for the analysis of hazardous materials: design and application of enclosed plasma sources. ASTM, West Conshohocken. https://doi.org/10.1520/STP951-EB

    Book  Google Scholar 

  6. Tandon L, Hastings E, Banar J, Barnes J, Beddingfield D, Decker D, Dyke J, Farr D, FitzPatrick J, Gallimore D, Garner S, Gritzo R, Hahn T, Havrilla G, Johnson B, Kuhn K, LaMont S, Langner D, Lewis C, Majidi V, Martinez P, McCabe R, Mecklenburg S, Mercer D, Meyers S, Montoya V, Patterson B, Pereyra RA, Porterfield D, Poths J, Rademacher D, Ruggiero C, Schwartz D, Scott M, Spencer K, Steiner R, Villarreal R, Volz H, Walker L, Wong A, Worley C (2008) Nuclear, chemical, and physical characterization of nuclear materials. J Radioanal Nucl Chem 276(2):467–473. https://doi.org/10.1007/s10967-008-0528-7

    Article  CAS  Google Scholar 

  7. Sampson TE, Hsue S-T, Parker JL, Johnson SS, Bowersox DF (1982) The determination of plutonium isotopic composition by gamma-ray spectroscopy. Nucl Instrum Methods Phys Res 193(1):177–183. https://doi.org/10.1016/0029-554X(82)90693-0

    Article  CAS  Google Scholar 

  8. Quemet A, Ruas A, Dalier V, Rivier C (2018) Americium isotope analysis by thermal ionization mass spectrometry using the total evaporation method. Int J Mass Spectrom 431:8–14. https://doi.org/10.1016/j.ijms.2018.05.017

    Article  CAS  Google Scholar 

  9. Inn KGW, Johnson CM, Oldham W, Jerome S, Tandon L, Schaaff T, Jones R, Mackney D, MacKill P, Palmer B, Smith D, LaMont S, Griggs J (2013) The urgent requirement for new radioanalytical certified reference materials for nuclear safeguards, forensics, and consequence management. J Radioanal Nucl Chem 296(1):5–22. https://doi.org/10.1007/s10967-012-1972-y

    Article  CAS  Google Scholar 

  10. Mathew KJ, Stanley FE, Thomas MR, Spencer KJ, Colletti LP, Tandon L (2016) Critical need for plutonium and uranium isotopic standards with lower uncertainties. Anal Methods 8(40):7289–7305. https://doi.org/10.1039/C6AY02267G

    Article  CAS  Google Scholar 

  11. Srinivasan B, Mathew K, Waggoner J, Narayanan U, Neuhoff J (2008) Uranium and plutonium samples exchange annual report. Safeguards measurement evaluation program. New Brunswick Laboratory, Argonne

    Google Scholar 

  12. Tandon L, Kuhn K, Decker D, Porterfield D, Laintz K, Wong A, Holland M, Peterson DS (2009) Plutonium metal standards exchange program for actinide measurement quality assurance (2001–2007). J Radioanal Nucl Chem 282(2):565. https://doi.org/10.1007/s10967-009-0215-3

    Article  CAS  Google Scholar 

  13. Jakopič R, Buják R, Aregbe Y, Richter S, Buda R, Zuleger E (2014) REIMEP-17: Plutonium and uranium amount content, and isotope amount ratios in synthetic input solution. Institute for Reference Materials and Measurements, Geel

    Google Scholar 

  14. Richter S, Alonso A, Truyens J, Kühn H, Verbruggen A, Wellum R (2006) REIMEP-18: inter-laboratory comparison for the measurement of uranium isotopic ratios in nitric acid solution institute for reference materials and measurements. Geel, Belgium

    Google Scholar 

  15. Verbruggen A, Alonso A, Eykens R, Kehoe F, Richter S, Wellum R (2005) REIMEP-16: plutonium isotopic ratios and abundances Report to participants. Institute for Reference Materials and Measurements, Geel

    Google Scholar 

  16. Laboratory IN (2015) Atomic power in space II: a history of space nuclear power and propulsion in the United States

  17. Bennett G (2006) Space nuclear power: opening the final frontier. In: 4th international energy conversion engineering conference and exhibit (IECEC). International Energy Conversion Engineering Conference (IECEC). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2006-4191

  18. Lange RG, Carroll WP (2008) Review of recent advances of radioisotope power systems. Energy Convers Manag 49(3):393–401. https://doi.org/10.1016/j.enconman.2007.10.028

    Article  CAS  Google Scholar 

  19. Groh HJ, Poe WL, Porter JA (2000) Development and performance of processes and equipment to recover Neptunium-237 and Plutonium-238. 50 years of excellence in science and engineering at the Savannah River Site. Savannah River Site

  20. Matlack GM, Metz CF (1967) Radiation characteristics of plutonium-238. Los Alamos Scientific Laboratory, Los Alamos

    Google Scholar 

  21. Rinehart GH (2001) Design characteristics and fabrication of radioisotope heat sources for space missions. Prog Nucl Energy 39(3):305–319. https://doi.org/10.1016/S0149-1970(01)00005-1

    Article  CAS  Google Scholar 

  22. Carver N, Xu N (2018) Plutonium-238 analytical chemistry transition for hazard reduction. Actinide research quarterly. G. T. Seaborg Institute for Transactinium Science, Los Alamos

    Google Scholar 

  23. Chong CHH, Crockett TW, Doty JW (1969) Dissolution of high-fired plutonium dioxide. J Inorg Nucl Chem 31(1):81–83. https://doi.org/10.1016/0022-1902(69)80056-4

    Article  CAS  Google Scholar 

  24. Woltermann HA, Ulrick TL, Antion D (1973) Dissolution of high-fired plutonium oxide. Mound Lab, Miamisburg

    Book  Google Scholar 

  25. ASTM (2002) Standard test method for plutonium assay by plutonium (III) diode array spectrophotometry. ASTM, West Conshohocken

    Google Scholar 

  26. Vajda N, Kim C-K (2011) Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology. Anal Chem 83(12):4688–4719. https://doi.org/10.1021/ac2008288

    Article  CAS  PubMed  Google Scholar 

  27. Fukuma HT, Fernandes EAN, Nascimento MRL, Quinelato AL (2001) Separation and spectrophotometric determination of thorium contained in uranium concentrate. J Radioanal Nucl Chem 248(3):549–553. https://doi.org/10.1023/A:1010662410958

    Article  CAS  Google Scholar 

  28. Rohwer H, Rheeder N, Hosten E (1997) Interactions of uranium and thorium with arsenazo III in an aqueous medium. Anal Chim Acta 341(2):263–268. https://doi.org/10.1016/S0003-2670(96)00559-4

    Article  CAS  Google Scholar 

  29. Sandell EB (1978) Photometric determination of traces of metals, 4th edn. Wiley, New York

    Google Scholar 

  30. Rowatt E, Williams RJ (1989) The interaction of cations with the dye arsenazo III. Biochem J 259(1):295–298

    Article  CAS  Google Scholar 

  31. Sampson TE, Kelley TA (1997) PC/FRAM: a code for the nondestructive measurement of the isotopic composition of actinides for safeguards applications. Appl Radiat Isot 48(10):1543–1548. https://doi.org/10.1016/S0969-8043(97)00154-1

    Article  CAS  Google Scholar 

  32. Sampson TE, Nelson GW, Kelley TA (1989) FRAM: A versatile code for analyzing the isotopic composition of plutonium from gamma-ray pulse height spectra. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  33. Myers SC, Jump RK, Porterfield DR, Carver NR, Foster LA (2011) Gamma-ray isotopic analysis of heat source plutonium using FRAM Software Part II. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  34. Myers SC, Porterfield DR, Carver NR, Jump RK, Foster LA (2012) Gamma-ray isotopic analysis of heat source plutonium using fram software. In: Paper presented at the Nuclear and Emerging Technologies for Space, Woodlands, TX

  35. Scribner BF, Mullin HR (1946) Carrier-distillation method for spectrographic analysis and its application to the analysis of uranium-base materials. J Res Natl Bureau Stand 37(6):379–389

    Article  CAS  Google Scholar 

  36. ASTM (2016) Standard test method for determination of metallic impurities in uranium metal or compounds by DC-arc emission spectroscopy. ASTM, West Conshohocken. https://doi.org/10.1520/C1517-16

    Book  Google Scholar 

  37. Manard BT, Matonic J, Montoya D, Jump R, Castro A, Xu N (2017) Assessment of the excitation temperatures and Mg II: I line ratios of the direct current (DC) arc source for the analysis of radioactive materials. J Radioanal Nucl Chem 312(2):385–393. https://doi.org/10.1007/s10967-017-5212-3

    Article  CAS  Google Scholar 

  38. Seaborg GT (1992) Transuranium elements: a half century. In: Morss LR, Fuger J (eds) Transuranium elements: a half century. American Chemical Society, Washington, pp 10–49

    Google Scholar 

  39. Penneman RA (1984) Americium, its early history and gram-scale separation. In: Paper presented at the International Chemical Congress of Pacific Basin Societies, Honolulu, HI

  40. Schulz WW (1976) Chemistry of americium. Atlantic Richfield Hanford Co., Richland

    Book  Google Scholar 

  41. Schulte LD, Gallimore DL, Spencer KJ, Tandon L, Foster LA, Kornreich DE (2011) Proposed specification requirements and qualification methods for Am241 O2 production operations. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  42. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281(2):361–372. https://doi.org/10.1016/0003-2670(93)85194-O

    Article  CAS  Google Scholar 

  43. Pibida L, Unterweger M, Karam L (2006) Development of gamma-ray emitting test sources for portal monitors. Appl Radiat Isot 64(10–11):1271–1272. https://doi.org/10.1016/j.apradiso.2006.02.074

    Article  CAS  PubMed  Google Scholar 

  44. Institute ANS (2016) American National Standard for Evaluation and Performance of Radiation Detection Portal Monitors for Use in Homeland Security, vol ANSI N42.35-2016. The Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, New York, NY, pp 10016-5997

  45. Keyser RM, Twomey TR (2009) Detector resolution required for accurate identification in common gamma-ray masking situations. J Radioanal Nucl Chem 282(3):841–847. https://doi.org/10.1007/s10967-009-0233-1

    Article  CAS  Google Scholar 

  46. Runkle RC (2011) Neutron sensors and their role in nuclear nonproliferation. Nucl Instrum Meth A 652(1):37–40. https://doi.org/10.1016/j.nima.2011.01.134

    Article  CAS  Google Scholar 

  47. Seymour R, Hull CD, Crawford T, Coyne B, Bliss M, Craig RA (2001) Portal, freight and vehicle monitor performance using scintillating glass fiber detectors for the detection of plutonium in the Illicit Trafficking Radiation Assessment Program. J Radioanal Nucl Chem 248(3):699–705. https://doi.org/10.1023/A:1010692712292

    Article  CAS  Google Scholar 

  48. Stromswold DC, Darkoch JW, Ely JH, Hansen RR, Kouzes RT, Milbrath BD, Runkle RC, Sliger WA, Smart JE, Stephens DL, Todd LC, Woodring ML (2004) Field tests of a NaI(Tl)-based vehicle portal monitor at border crossings. In: Nuclear science conference record, pp 196–200

  49. Hsue S-T, Stewart JE, Krick MS (2000) Preparation of pure plutonium metal standards for nondestructive assay. Los Alamos National Laboratory, Los Alamos

    Book  Google Scholar 

  50. International A (2012) ASTM C1108-12 (2012) standard test method for plutonium by controlled-potential coulometry. https://doi.org/10.1520/c1108-12

  51. Shults WD (1963) Applications of controlled-potential coulometry to the determination of plutonium: a review. Talanta 10:833–849

    Article  Google Scholar 

  52. Waterbury GR, Nelson GB, Bergstresser KS, Metz CF (1970) Controlled-potential coulometric and potentiometric titrations of uranium and plutonium in ceramic-type materials. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  53. Fortune WB, Mellon MG (1938) Determination of iron with o-phenanthroline: a spectrophotometric study. Ind Eng Chem Anal Ed 10(2):60–64. https://doi.org/10.1021/ac50118a004

    Article  CAS  Google Scholar 

  54. Callis EL, Abernathey RM (1991) High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom Ion Processes 103(2–3):93–105. https://doi.org/10.1016/0168-1176(91)80081-w

    Article  CAS  Google Scholar 

  55. Stanley FE, Byerly BL, Thomas MR, Spencer KJ (2016) Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples. J Am Soc Mass Spectr 27(6):1136–1138. https://doi.org/10.1007/s13361-016-1380-6

    Article  CAS  Google Scholar 

  56. Cary SK, Livshits M, Cross JN, Ferrier MG, Mocko V, Stein BW, Kozimor SA, Scott BL, Rack JJ (2018) Advancing understanding of the + 4 metal extractant thenoyltrifluoroacetonate (TTA(−)); synthesis and structure of M(IV)TTA(4) (M-IV = Zr, Hf, Ce, Th, U, Np, Pu) and M-III(TTA)(4)(−) (M-III = Ce, Nd, Sm, Yb). Inorg Chem 57(7):3782–3797. https://doi.org/10.1021/acs.inorgchem.7b03089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396. This document is LA-UR-18-29929. The authors would like to thank the entire C-AAC group at LANL, particularly Floyd Stanley, Khal Spencer, Lisa Colletti, Katherine Garduno, Russell Keller, Dylan Klundt, Katthau Mathew, Elmer Lujan, Donivan Porterfield, Mike Rearick, Mike Schappert, Mariam Thomas, Lisa Townsend, and Ning Xu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lav Tandon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cross, J.N., Kuhn, K.J., Kunsberg, D.J. et al. Analytical chemistry of nuclear material: case studies from Los Alamos National Laboratory. J Radioanal Nucl Chem 318, 1697–1712 (2018). https://doi.org/10.1007/s10967-018-6328-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6328-9

Keywords

Navigation