Skip to main content
Log in

Ultra-sensitive radioanalytical technologies for underground physics experiments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Assessment of radioactive contamination of construction materials used in deep underground experiments has been carried out using ultra-sensitive analytical methods such as radiometrics, inductively coupled plasma mass spectrometry (ICPMS), accelerator mass spectrometry (AMS), and neutron activation analysis. The lowest detection limits, < 1 nBq g−1, has been obtained with ICPMS and AMS techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold R et al (2010) Probing new physics models of neutrinoless double beta decay with SuperNEMO. Eur Phys J C 70:927–943

    Article  CAS  Google Scholar 

  2. Agostini M et al (2016) Search of neutrinoless double beta decay with the GERDA experiment. Nucl Part Phys Proc 273–275:1876–1882

    Article  Google Scholar 

  3. Abgrall N et al (2015) The Majorana Demonstrator neutrinoless double-beta decay experiment-Majorana Collaboration. Adv High Energy Phys 2014:365432

    Google Scholar 

  4. Abgrall N et al (2017) The large enriched germanium experiment for neutrinoless double beta decay. AIP Conf Proc 1894:020027

    Article  Google Scholar 

  5. Alimonti G et al (2009) The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl Instrum Methods Phys Res A 600:568–593

    Article  CAS  Google Scholar 

  6. Angloher G et al (2017) CRESST collaboration. Eur Phys J C 77:637–645

    Article  CAS  Google Scholar 

  7. Angloher G et al (2014) EURECA conceptual design report. Phys Dark Univ 3:41–74

    Article  CAS  Google Scholar 

  8. Arnold R et al (2015) Results of the search for neutrinoless double beta-decay in 100Mo with the NEMO-3 experiment. Phys Rev D 92:072011

    Article  CAS  Google Scholar 

  9. Povinec PP (2017) Background constraints of the SuperNEMO experiment for neutrinoless double beta-decay searches. Nucl Instrum Methods Phys Res A 845:398–403

    Article  CAS  Google Scholar 

  10. Povinec PP et al (2008) New isotope technologies in environmental physics. Acta Phys Slov 58:1–154

    Article  CAS  Google Scholar 

  11. Povinec PP (2012) New gamma-spectrometry technologies for environmental sciences. J Anal Sci Technol 3:42–71

    Article  CAS  Google Scholar 

  12. Povinec PP (2018) New ultra-sensitive radioanalytical technologies for new science. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-5787-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Laubenstein M et al (2004) Underground measurements of radioactivity. Appl Radiat Isotopes 61:167–172

    Article  CAS  Google Scholar 

  14. Loaiza P et al (2015) Obelix, a new low-background HPGe at Modane Underground Laboratory. AIP Conf Proc 1672(1):130002-1

    Google Scholar 

  15. Brudanin VB et al (2017) The low-background HPGe gamma-spectrometer OBELIX for the investigation of the double beta decay to excited states. IOSR-JAP 9:22–29

    Article  Google Scholar 

  16. Laubenstein M (2017) Screening of materials with high purity germanium detectors at the Laboratori Nazionali del Gran Sasso. Int J Mod Phys A 32:1743002

    Article  CAS  Google Scholar 

  17. Breier R, Laubenstein M, Povinec PP (2017) Monte Carlo simulation of background characteristics of a HPGe detector operating underground in the Gran Sasso National Laboratory. Appl Radiat Isotopes 126:188–190

    Article  CAS  Google Scholar 

  18. Breier R, Brudanin VB, Loaiza P, Piquemal F, Povinec PP, Rukhadze E, RukhadzeV Štekl I (2018) Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory. J Environ Radioact 190–191:134–140

    Article  CAS  PubMed  Google Scholar 

  19. Povinec PP (2018) Analysis of radionuclides at ultra-low levels: a comparison of low and high-energy mass spectrometry with gamma-spectrometry for radiopurity measurements. Appl Radiat Isotopes 126:26–30

    Article  CAS  Google Scholar 

  20. Budjáš D et al (2009) Gamma-ray spectrometry of ultra-low levels of radioactivity within the material screening program for the GERDA experiment. Appl Radiat Isotopes 67:755–758

    Article  CAS  Google Scholar 

  21. Abgrall N et al (2016) The Majorana demonstrator radioassay program. Nucl Instrum Methods Phys Res A 828:22–36

    Article  CAS  Google Scholar 

  22. Palušová V, Breier R, Piquemal F, Povinec PP (2018) Monte Carlo simulation of environmental background sources of a HPGe detector operating in Modane underground laboratory. J Radioanal Nucl Chem (in print)

  23. Loaiza P et al (2017) The BiPo-3 detector. Appl Radiat Isotopes 123:54–59

    Article  CAS  Google Scholar 

  24. Barabash A et al (2017) The BiPo-3 detector for the measurement of ultra-low natural radioactivities of thin materials. JINST 12:P06002

    Article  Google Scholar 

  25. Agyriades J et al (2010) Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils. Nucl Instrum Methods Phys Res A 622:120–128

    Article  CAS  Google Scholar 

  26. Roos P (2008) Analysis of radionuclides using ICPMS. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 295–330

    Chapter  Google Scholar 

  27. Nisi S et al (2009) Comparison of inductively coupled mass spectrometry and ultra-low-level gamma-ray spectroscopy for ultra-low background material selection. Appl Radiat Isotopes 67:828–832

    Article  CAS  Google Scholar 

  28. LaFerriere BD et al (2015) A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry. Nucl Instrum Methods Phys A 775:93–98

    Article  CAS  Google Scholar 

  29. Jull AJT et al (2008) Accelerator mass spectrometry of long-lived light radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 240–262

    Google Scholar 

  30. Fifield LK (2008) Accelerator mass spectrometry of long-lived heavy radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 263–295

    Chapter  Google Scholar 

  31. Famulok N et al (2015) Ultrasensitive detection method for primordial nuclides in copper with accelerator mass spectrometry. Nucl Instrum Methods Phys B 361:193–196

    Article  CAS  Google Scholar 

  32. Povinec PP et al (2015) A new IBA-AMS laboratory at the Comenius University in Bratislava (Slovakia). Nucl Instr Methods Phys Res B 342:321–326

    Article  CAS  Google Scholar 

  33. Povinec PP et al (2015) Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava. Nucl Instr Methods Phys Res B 361:87–94

    Article  CAS  Google Scholar 

  34. Povinec PP et al (2015) Joint Bratislava–Prague studies of radiocarbon and uranium in the environment using accelerator mass spectrometry and radiometric methods. J Radioanal Nucl Chem 304:67–73

    Article  CAS  Google Scholar 

  35. Benedik L, Byrne AR (1995) Simultaneous determination of trace uranium and thorium by radiochemical neutron activation analysis. J Radioanal Nucl Chem 189:325–331

    Article  CAS  Google Scholar 

  36. Byrne AR, Benedik L (1999) Applications of neutron activation analysis in determination of natural and man-made radionuclides, including 231Pa. Czechoslov J Phys 49S1:263–270

    Article  Google Scholar 

  37. Hou X (2008) Activation analysis for the determination of long-lived radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 370–406

    Google Scholar 

  38. Kučera J, Kameník J, Povinec PP (2017) Radiochemical separation of mostly short-lived neutron activation products. J Radioanal Nucl Chem 311:1299–1307

    Article  CAS  Google Scholar 

  39. Lee SH et al (2008) Ultra-low-level determination of 236U in IAEA marine reference materials by ICPMS and AMS. Appl Radiat Isotopes 66:823–828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out in the framework of the EU Research and Development Operational Program funded by the ERDF (Projects 26240120012, 26240120026 and 26240220004), with partial support from the Slovak Research and Development Agency (Project APVV-15-0576), and from the Slovak Scientific Granting Agency (Project VEGA 1/0891/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Povinec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povinec, P.P., Benedik, L., Breier, R. et al. Ultra-sensitive radioanalytical technologies for underground physics experiments. J Radioanal Nucl Chem 318, 677–684 (2018). https://doi.org/10.1007/s10967-018-6105-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6105-9

Keywords

Navigation