Skip to main content
Log in

Spectroscopic Compton imaging of prompt gamma emission at the MeV energy range

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work explores a novel tomographic approach to PGAA that is both quantitative and spatially resolved, adapted from a clinical “proton beam range finder” in which MeV gamma rays are imaged by coincidence measurements of Compton scattered gamma rays with multi-detector arrays. We performed preliminary measurements using a Compton camera made with CdZnTe detector arrays on a series of test samples with high-energy (> 1 MeV) gamma emission lines. 3D image reconstructions were performed on the 2.2 MeV peak from H. The image reconstruction methods were also evaluated using the emission data generated by Monte Carlo simulations under ideal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lindstrom RM, Révay Z (2017) Prompt gamma neutron activation analysis (PGAA): recent developments and applications. J Radioanal Nucl Chem 314:843–858. https://doi.org/10.1007/s10967-017-5483-8

    Article  CAS  Google Scholar 

  2. Schulze R, Szentmiklósi L, Kudejova P et al (2013) The ANCIENT CHARM project at FRM II: three-dimensional elemental mapping by prompt gamma activation imaging and neutron tomography. J Anal At Spectrom 28:1508–1512. https://doi.org/10.1039/C3JA50162K

    Article  CAS  Google Scholar 

  3. The Imaging Compton Telescope (COMPTEL). https://heasarc.gsfc.nasa.gov/docs/cgro/comptel/. Accessed 28 Mar 2018

  4. MacLeod A (2016) Modular survey spectrometer and compton imager CIRMS conference. NIST, Gaithersburg

    Google Scholar 

  5. Polf JC, Rajesh P, Mackin DS et al (2013) Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation. Phys Med Biol 58:5821–5831. https://doi.org/10.1088/0031-9155/58/17/5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Polf JC, Avery S, Mackin DS, Beddar S (2015) Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Phys Med Biol 60:7085–7099. https://doi.org/10.1088/0031-9155/60/18/7085

    Article  CAS  PubMed  Google Scholar 

  7. Todd RW, Nightingale JM, Everett DB (1974) A proposed γ camera. Nature 251:132–134. https://doi.org/10.1038/251132a0

    Article  CAS  Google Scholar 

  8. Mackin D, Polf J, Peterson S, Beddar S (2012) Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys Med Biol 57:3537–3553. https://doi.org/10.1118/1.4767756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andreyev A, Sitek A, Celler A (2010) Fast image reconstruction for Compton camera using stochastic origin ensemble approach. Med Phys 38:429–438. https://doi.org/10.1118/1.3528170

    Article  Google Scholar 

  10. Cree MJ, Bones PJ (1994) Towards direct reconstruction from a gamma camera based on Compton scattering. IEEE Trans Med Imaging 13:398–407. https://doi.org/10.1109/42.293932

    Article  CAS  PubMed  Google Scholar 

  11. Paul RL, Şahin D, Cook JC et al (2015) NGD cold-neutron prompt gamma-ray activation analysis spectrometer at NIST. J Radioanal Nucl Chem 304:189–193. https://doi.org/10.1007/s10967-014-3635-7

    Article  CAS  Google Scholar 

  12. Goorley T, James M, Booth T et al (2012) Initial MCNP6 release overview. Nucl Technol 180:298–315. https://doi.org/10.13182/NT11-135

    Article  CAS  Google Scholar 

  13. Turkoglu D, Downing RG, Chen W et al (2017) A 3He beam stop for minimizing gamma-ray and fast-neutron background. J Radioanal Nucl Chem 311:1243–1249. https://doi.org/10.1007/s10967-016-4954-7

    Article  CAS  Google Scholar 

  14. Turkoglu D, Chen-Mayer H, Paul R, Zeisler R (2017) Assessment of PGAA capability for low-level measurements of H in Ti alloys. Analyst 142:3822–3829. https://doi.org/10.1039/C7AN01308F

    Article  CAS  PubMed  Google Scholar 

  15. Zhang F, He Z, Seifert CE (2007) A prototype three-dimensional position sensitive CdZnTe detector array. IEEE Trans Nucl Sci 54:843–848. https://doi.org/10.1109/TNS.2007.902354

    Article  Google Scholar 

  16. Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Danyal Turkoglu was supported by an NRC Research Associateship award at NIST. Benjamin Riley was supported by the NIST Summer Undergraduate Internship Fellowship program. The research reported in this publication was supported by the National Institutes of Health National Cancer Institute under award number R01CA187416. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiyu H. Chen-Mayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen-Mayer, H.H., Turkoglu, D.J. et al. Spectroscopic Compton imaging of prompt gamma emission at the MeV energy range. J Radioanal Nucl Chem 318, 241–246 (2018). https://doi.org/10.1007/s10967-018-6070-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6070-3

Keywords

Navigation