Skip to main content
Log in

Porous ZrC-carbon microspheres as potential insoluble target matrices for production of 188W/188Re

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

New microsphere sorbents are reported, which could find application in demanding radiation environments and especially as targets for the production of nuclear medicines by neutron irradiation. An easily-synthesized Zr anionic complex was introduced into quaternary amine-functionalised polystyrene-divinylbenzene-based anion-exchange resins by batch adsorption. Upon carbothermal reduction, the precursors were converted to porous carbon matrices containing particles of ZrC and ZrO2 polymorphs. The most phase-pure material, ZrAX-1, possessed high surface area, multi-scale porosity and high mechanical strength. Adsorption of Re and W was investigated and its possible deployment as a reusable host for the production of 188W/188Re is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dash A, Knapp FFRJ (2015) An overview of radioisotope separation technologies for development of 188W/188Re radionuclide generators providing 188Re to meet future research and clinical demands. RSC Adv. 5:39012–39036

    Article  CAS  Google Scholar 

  2. Yttrium-90 and Rhenium-188 radiopharmaceuticals for radionuclide therapy (2015). IAEA radioisotopes and radiopharmaceuticals series no. 5. International Atomic Energy Agency, Vienna

  3. Argyrou M, Valassi A, Andreou M, Lyra M (2013) Rhenium-188 production in hospitals, by W-188/Re-188 generator, for easy use in radionuclide therapy. Int J Mol Imaging. https://doi.org/10.1155/2013/290750

    Article  PubMed  PubMed Central  Google Scholar 

  4. Storms EK (1967) The refractory carbides. Refractory materials, vol 2. Academic Press, New York

    Google Scholar 

  5. Katoh Y, Vasudevamurthy G, Nozawa T, Snead LL (2013) Properties of zirconium carbide for nuclear fuel applications. J Nucl Mater 441:718–742. https://doi.org/10.1016/j.jnucmat.2013.05.037

    Article  CAS  Google Scholar 

  6. Gosset D, Dolle M, Simeone D, Baldinozzi G, Thome L (2008) Structural evolution of zirconium carbide under ion irradiation. J Nucl Mater 373(1–3):123–129. https://doi.org/10.1016/j.jnucmat.2007.05.034

    Article  CAS  Google Scholar 

  7. Snead LL, Katoh Y, Kondo S (2010) Effects of fast neutron irradiation on zirconium carbide. J Nucl Mater 399:200–207. https://doi.org/10.1016/j.jnucmat.2010.01.020

    Article  CAS  Google Scholar 

  8. Scales N, Chen J, Hanley TL, Riley DP, Lumpkin GR, Luca V (2015) Hierarchically porous carbon-zirconium carbide spheres as potentially reusable transmutation targets. Microporous Mesoporous Mater 212:100–109. https://doi.org/10.1016/j.micromeso.2015.03.025

    Article  CAS  Google Scholar 

  9. Blurton KF (1972) Preparation of highly dispersed platinum on carbon. Carbon 10(3):305–315. https://doi.org/10.1016/0008-6223(72)90329-6

    Article  CAS  Google Scholar 

  10. Miura K, Nakagawa H (2003) Preparation of metal-loaded porous carbons and their use as a highly active catalyst for reduction of nitric oxide (NO). In: Yasuda M, Inagaki M, Kaneko K, Endo M, Oya A, Tanabe Y (eds) Carbon alloys: novel concepts to develop carbon science and technology. Elsevier, Amsterdam. https://doi.org/10.1016/b978-008044163-4/50031-0

    Chapter  Google Scholar 

  11. Trens P, Caps V, Peckett JW (2003) Catalytic oxidation of trans-stilbene using pyrolysed manganese-loaded cation exchange resin. Appl Catal A 251(1):19–28. https://doi.org/10.1016/S0926-860X(03)00311-9

    Article  CAS  Google Scholar 

  12. Trens P, Peckett JW, Stathopoulos VN, Hudson MJ, Pomonis PJ (2003) Phosphotungstate anions supported on spherical beads of carbon as highly efficient catalysts for the dehydration of propan-2-ol to propene. Appl Catal A 241(1–2):217–226. https://doi.org/10.1016/S0926-860X(02)00498-2

    Article  CAS  Google Scholar 

  13. Li B, Ren Y, Fan Q, Feng A, Dong W (2004) Preparation and characterization of spherical nickel-doped carbonaceous resin as hydrogenation catalysts. I. Carbonization procedures. Carbon 42(12–13):2669–2676. https://doi.org/10.1016/j.carbon.2004.06.010

    Article  CAS  Google Scholar 

  14. Yu W, Zheng J, He X, Zhao Y (2008) Synthesis of spherical activated carbon loaded with metal particles and its performance of thiophene adsorption. Huagong Xuebao (Chin Ed) 59(11):2824–2829

    CAS  Google Scholar 

  15. Kudo S, Maki T, Miura K, Mae K (2010) High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether. Carbon 48(4):1186–1195. https://doi.org/10.1016/j.carbon.2009.11.042

    Article  CAS  Google Scholar 

  16. Wilson MS, Delariva A, Garzon FH (2011) Synthesis of sub-2 nm ceria crystallites in carbon matrixes by simple pyrolysis of ion-exchange resins. J Mater Chem 21:7418–7424. https://doi.org/10.1039/c1jm10529a

    Article  CAS  Google Scholar 

  17. Kotai L, Pasinszki T, Czegeny Z, Balint S, Sajo I, May Z, Nemeth P, Karoly Z, Sharma PK, Sharma V, Banerji KK (2012) Metal and metal-sulfide containing carbons from sulfonated styrene-divinylbenzene copolymer based ion-exchangers. Eur Chem Bull 1(10):398–400

    CAS  Google Scholar 

  18. Li W, Zhang Z, Cui A, Fan J, Sun X (2013) A gasoline desulfurization adsorbent and preparation method thereof, CN103143321A.

  19. Fan J, Lan H, Zhang Z, Li W (2014) Study on gasoline adsorptive desulfurization of resin-based modified spherical activated carbon. Shiyou Lianzhi Yu Huagong 45(9):10–15

    CAS  Google Scholar 

  20. Beatty RL (1976) Microspheres containing metal carbide from metal-charged resin beads, DE2527093A1

  21. Tosheva L, Parmentier J, Saadallah S, Vix-Guterl C, Valtchev V, Patarin J (2004) Carbon and SiC macroscopic beads from ion-exchange resin templates. J Am Chem Soc 126(42):13624–13625. https://doi.org/10.1021/ja0461217

    Article  CAS  PubMed  Google Scholar 

  22. Scales N, Chen J, Aughterson RD, Karatchevtseva I, Stopic A, Lumpkin GR, Luca V (2018) Porous Zr2SC-carbon microspheres: Possible radiation tolerant sorbents and transmutation hosts for technetium-99. Microporous Mesoporous Mater 259:67–78

    Article  CAS  Google Scholar 

  23. Bochkarev GS, Zaitsev LM, Kozhenkova VN (1963) Complexes of zirconium oxalates. Zh Neorg Khim 8:2248–2253

    CAS  Google Scholar 

  24. Simonits A, De Corte F, Hoste J (1975) Single-comparator methods in reactor neutron activation analysis. J Radioanal Chem 24(1):31–46. https://doi.org/10.1007/BF02514380

    Article  CAS  Google Scholar 

  25. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1291. https://doi.org/10.1039/b613962k

    Article  CAS  PubMed  Google Scholar 

  26. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  27. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  28. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  29. Sacks MD, Wang C-A, Yang Z, Jain A (2004) Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors. J Mater Sci 39:6057–6066. https://doi.org/10.1023/B:JMSC.0000041702.76858.a7

    Article  CAS  Google Scholar 

  30. Rejasse F, Repaud O, Trolliard G, Masson O, Maitre A (2016) Experimental investigation and thermodynamic evaluation of the C-O-Zr ternary system. RSC Adv 6:100122–100135

    Article  CAS  Google Scholar 

  31. Gendre M, Maitre A, Trolliard G (2011) Synthesis of zirconium oxycarbide (ZrCxOy) powders: influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties. J Eur Ceram Soc 31:2377–2385

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Materials and equipment access were provided and/or funded by Australian Nuclear Science and Technology Organisation (ANSTO). The authors gratefully acknowledge the following ANSTO staff for their contributions: Mr Kerry Cruikshank and Dr Ken Short for ongoing technical support for our tube furnace; Mr Karl Toppler for assistance with mechanical testing equipment; and Mr Joel Davis for SEM data. Mercury Porosimetry data were acquired by Particle & Surface Sciences Pty Ltd, NSW, Australia and O, N microanalysis was conducted by CSIRO Mineral Resources, VIC, Australia; both on a pay-per-sample basis. This research has been conducted with the support of the Australian Government Research Training Program Scholarship. Professor Chen acknowledges continuing support from Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Scales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scales, N., Chen, J., Aughterson, R.D. et al. Porous ZrC-carbon microspheres as potential insoluble target matrices for production of 188W/188Re. J Radioanal Nucl Chem 318, 835–847 (2018). https://doi.org/10.1007/s10967-018-6059-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6059-y

Keywords

Navigation