Skip to main content
Log in

Irradiation of glyceraldehyde under simulated prebiotic conditions: Study in solid and aqueous state

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We investigated the radiolysis of dl-glyceraldehyde in a solid state and in an aqueous solution. The catalytic effect of a clay onto glyceraldehyde was also studied. We carried out the irradiation in a 60Co gamma ray source (Gammabeam 650 PT), with doses up to 360 kGy, at three temperatures (77, 198 and 295 K). For the analysis, we used various spectroscopic and chromatographic analytical methods. The results show that this compound is labile under irradiation and that it forms malondialdehyde, glycolaldehyde and other sugar-like compounds that are important in chemical-evolution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kochetkov NK, Kudrjashov LI, Chlenov MA (1979) Radiation chemistry of carbohydrates. Elsevier Ltd, Amsterdam

    Google Scholar 

  2. von Sonntag C, Tipson RS (2013) In: Horton D (ed) Advances in carbohydrate chemistry and biochemistry, 1st edn. Academic Press, New York

    Google Scholar 

  3. Meinert C, Myrgorodska I, De Marcellus P, Buhse T, Nahon L, Hoffmann SV, Lle d’Hendecourt, Meierhenrich UJ (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212

    Article  CAS  PubMed  Google Scholar 

  4. Weber A, Pizzarello LS (2006) The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecule evolution. PNAS 103:12713–12717

    Article  CAS  PubMed  Google Scholar 

  5. Kofoed J, Reymond JL, Darbre T (2005) Prebiotic carbohydrates synthesis: zinc-proline catalyzes direct aqueous aldol reactions of α-hidroxy aldehydes and ketones. Org Biomol Chem 3:1850–1855

    Article  CAS  PubMed  Google Scholar 

  6. Chen MC, Cafferty BJ, Mamajanov I, Gállego I, Khanam J, Krishnamurthy R, Hud NV (2014) Spontaneous prebiotic formation of a β-ribofuranoside that self-assembles with a complementary heterocycle. J Am Chem Soc 136:5640–5646

    Article  CAS  PubMed  Google Scholar 

  7. Jalbout AF, Abrell L, Adamowicz L, Polt R, Apponi AJ, Ziurys LM (2007) Sugar synthesis from a gas-phase formose reaction. Astrobiology 7(3):433–442

    Article  CAS  PubMed  Google Scholar 

  8. Draganic IG, Draganic ZD, Adloff JP (1990) Radiation and radioactivity on Earth and beyond. CRC Press Inc, Boca Raton

    Google Scholar 

  9. Draganic I, Draganic Z (1998) Radiation-chemical approaches to comets and interstellar dust. J Chim Phys 85:55–61

    Article  Google Scholar 

  10. Mosqueira FG, Albarrán G, Negrón-Mendoza A (1996) A review of conditions affecting the radiolysis due to 40K on nucleic acid bases and their derivatives adsorbed on clay minerals: implications in prebiotic chemistry. Orig Life Evol Bios 26:75–94

    Article  CAS  Google Scholar 

  11. Cataldo F, Ursini O, Angelini G, Iglesias-Groth S, Manchado A (2011) Radiolysis and radioracemization of 20 amino acids from the beginning of the solar system. Rend Fis Acc Lincei 22:81–94

    Article  Google Scholar 

  12. Ramos-Bernal S, Negrón-Mendoza A (1992) A radiation heterogeneous processes of 14C-acetic acid adsorbed in Na-montmorillonite. J Radioanal Nucl Chem 160:487

    Article  CAS  Google Scholar 

  13. Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New York

    Google Scholar 

  14. Kwon TW, Watts BM (1963) Determination of malonaldehyde by ultraviolet spectrophotometry. J Food Sci 28:627–630

    Article  CAS  Google Scholar 

  15. Cruz-Castañeda J, Aguilar-Ovando E, Buhse T, Ramos-Bernal S, Meléndez-López A, Camargo-Raya C, Fuentes-Carreón C, Negrón-Mendoza A (2017) The importance of glyceraldehyde radiolysis in chemical evolution. J Radioanal Nucl Chem 311:1135–1141

    Article  CAS  Google Scholar 

  16. Kobayashi Y, Igarashi T, Takahasi H, Higasi K (1976) Infrared and Raman studies of the dimeric structures of 1,3-dihydroxiacetone, D (+)- and dl-glyceraldehyde. J Mol Struct 35:85–99

    Article  CAS  Google Scholar 

  17. Steenken S, Schulte-Frohlinde D (1973) Fragmentation of radical derived from glycolaldehyde and glyceraldehyde in aqueous solution: an EPR study. Tetrahedron Lett 9:653–654

    Article  Google Scholar 

  18. Steenken S (1979) Oxidation of phenolates and phenylenediamines by 2-alkononyl radicals produced from 1,2-dihydroxy- and 1-hydroxy-2-alkoxyalkyl radicals. Phys Chem 83:595–599

    Article  CAS  Google Scholar 

  19. Fuchs E, Heusinger H (1995) Sonolysis and radiolysis of glyceraldehyde deaerated aqueous solution. Ultrason Sonochem 2:S105–S109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACyT (Grant No. C001-CONACyT-ANR-188689) and PAPIIT (Grant No. IN226817). J.C. received supported from a CONACyT fellowship and from the Posgrado en Ciencias Químicas. We thank Chem. Claudia Camargo, M.Sc. Benjamin Leal, and Phys. Francisco Flores for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Negrón-Mendoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Ovando, E., Cruz-Castañeda, J., Buhse, T. et al. Irradiation of glyceraldehyde under simulated prebiotic conditions: Study in solid and aqueous state. J Radioanal Nucl Chem 316, 971–979 (2018). https://doi.org/10.1007/s10967-018-5830-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5830-4

Keywords

Navigation