Skip to main content
Log in

Sorption of inorganic radiocarbon on iron oxides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption of inorganic radiocarbon on goethite, hematite and magnetite was studied as a function of carbon concentration, pH and ionic strength. It was discovered that the sorption of radiocarbon on magnetite was negligible in all studied conditions. The distribution coefficients of radiocarbon on hematite and goethite decreased with increasing pH whereas the ionic strength had only a slight decreasing effect on radiocarbon sorption. The sorption on goethite and hematite was modelled with PhreeqC using a generalized double-layer surface complexation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hjerpe T, Ikonen ATK, Broed R (2009) Biosphere assessment report 2009, Posiva Oy, Posiva Report 2010-03

  2. Posiva. (2013) Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto—Models and Data for the Repository System 2012. Posiva Oy, Posiva Report 2013-01

  3. Johnson L, Poinssot C, Ferry C, Lovera P (2004) Estimates of the instant release fraction for UO2 and MOX fuel at t = 0. NAGRA Technical Report 04-08

  4. Limer LMC, Smith K, Albrecht A, Marang L, Norris S, Smith GM, Thorne MC,Xu S (2012) C-14 long-term dose assessment: data review, scenario development, and model comparison. Strålsäkerhetsmyndigheten, p 47

  5. Deng B, Campbell TJ, Burris TR (1997) Hydrocarbon formation in metallic iron/water systems. Environ Sci Technol 31:1185–1190

    Article  CAS  Google Scholar 

  6. Kaneko S, Tanabe H, Sasoh M, Takahashi R, Shibano T, Tateyama S (2003) A study on the chemical forms and migration behavior of 14C leached from the simulated hull waste in the underground condition. Mat Res Soc Symp Proc 757:621–626

    CAS  Google Scholar 

  7. Pitkänen P, Partamies S (2007) Origin and Implications of Dissolved Gases in Groundwater at Olkiluoto, Posiva Oy, Posiva Report 2007-04

  8. Aaltonen I, Engström J, Front K, Gehör S, Kosunen P, Kärki A, Mattila J, Paananen M, Paulamäki S. (2016) Geology of Olkiluoto. Posiva Oy, Posiva Report 2016-16

  9. Gonfiantini R, Zuppi GM (2003) Carbon isotope exchange rate of dic in karst groundwater. Chem Geology 197:319–336

    Article  CAS  Google Scholar 

  10. Lempinen J, Lehto J (2016) Rate of radiocarbon retention onto calcite by isotope exchange. Radiochim Acta 104(9):663–671

    Article  CAS  Google Scholar 

  11. Van Geen A, Robertson AP, Leckie JO (1994) Complexation of carbonate species at the goethite surface: implications for adsorption of metal ions in natural waters. Geochim Cosmochim Acta 58:2073–2086

    Article  Google Scholar 

  12. Wijnja H, Schulthess CP (2001) Carbonate adsorption mechanism on goethite studied with ATR–FTIR, DRIFT, and proton coadsorption measurements. Soil Sci Soc Am J 65:324–330

    Article  CAS  Google Scholar 

  13. Villalobos M, Leckie JO (2001) Surface complexation modeling and FTIR study of carbonate adsorption to goethite. J Colloid Int Sci 235:15–32

    Article  CAS  Google Scholar 

  14. Brechbühl Y, Christl I, Elzinga EJ, Kretzschmar R (2012) Competetive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments. J Colloid Int Sci 377:313–321

    Article  Google Scholar 

  15. Cornell RM, Schwertmann U (2003) The iron oxides. Wiley, Hoboken

    Book  Google Scholar 

  16. Appelo CAJ, Van Der Weiden MJJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103

    Article  CAS  Google Scholar 

  17. Dzombak DA, Morel FMM (1990) Surface complexation modelling: hydrous ferric oxide. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the Finnish Research Program on Nuclear Waste Management KYT2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Lehto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lempinen, J., Muuri, E., Lusa, M. et al. Sorption of inorganic radiocarbon on iron oxides. J Radioanal Nucl Chem 316, 717–723 (2018). https://doi.org/10.1007/s10967-018-5793-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5793-5

Keywords

Navigation