Skip to main content
Log in

A method for self-attenuation and sample-height correction for counting efficiency of HPGe using Marinelli beaker geometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A procedure for self-attenuation and sample height correction in HPGe gamma spectrometry efficiency has been presented. An MCNP model of an HPGe detector was used to calculate the full energy peak efficiency (FEPE) for a group of different samples with different heights in Marinelli beaker geometry. A proper function has been fitted to the simulation results to obtain the correction function. The function has been used to calculate the FEPE of a spiked soil sample in different sample heights by considering the experimentally known FEPE of another standard solution source. A good agreement between the experiments and calculations have been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilmore GR (2008) Practical gamma-ray spectrometry. Wiley, West Sussex

    Book  Google Scholar 

  2. Canbazoglu C, Turhan S, Bakkal S, Ugur FA, Goren E (2013) Analysis of gamma emitting radionuclides (terrestrial and anthropogenic) in soil samples from Kilis province in south Anatolia Turkey. Ann Nucl Energy 62:153–157

    Article  CAS  Google Scholar 

  3. Psichoudaki M, Papaefthymiou H (2008) Natural radioactivity measurements in the city of Ptolemais (Northern Greece). J Environ Radioact 99:1011–1017

    Article  CAS  Google Scholar 

  4. Mustapha AO, Patel JP, Rathore IVS, Hashim NO, Otwom D (2004) An investigation of the repeatability of calibration factors in gamma-ray spectrometry of geological materials. Appl Radiat Isot 60:79–82

    Article  CAS  Google Scholar 

  5. Turhan S, Köseb A, Varinlioğlu A, Şahinc NK, Arıkan İ, Oğuz F, Yücel B, Özdemir T (2012) Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples. Geoderma 187–188:117–124

    Article  Google Scholar 

  6. Iurian Andra-Rada, Cosma Constantin (2014) A practical experimental approach for the determination of gamma-emitting radionuclides in environmental samples. Nucl Instrum Methods A 763:132–136

    Article  CAS  Google Scholar 

  7. Arnedo MA, Rubiano JG, Alonso H, Tejera A, González A, Gonzalez J, Gil JM, Rodríguez R, Martel P, Bolivar JP (2017) Mapping natural radioactivity of soils in the eastern Canary Islands. J Environ Radioact 166:242–258

    Article  CAS  Google Scholar 

  8. Sima O, Dovlete C (1997) Matrix effects in the activity measurement of environmental samples implementation of specific corrections in a gamma-ray spectrometry analysis program. Appl Radiat Isot 48:59–69

    Article  CAS  Google Scholar 

  9. Cutshall NH, Larsen IL, Olsen CR (1983) Direct analysis of 210Pb in sediment samples: self-absorption correction. Nucl Instrum Methods Phys Res B 206:309–312

    Article  CAS  Google Scholar 

  10. Galloway RB (1991) Correction for sample self-absorption in activity determination by gamma spectrometry. Nucl Instrum Methods Phys Res A 300(2):367–373

    Article  Google Scholar 

  11. Moens L, De Donder J, Lin X, De Corte F, De Wispelaere A, Simonits A, Hoste J (1981) Calculation of the absolute peak efficiency of gamma ray detectors for different counting geometries. Nucl Instrum Methods Phys Res 187:451–472

    Article  CAS  Google Scholar 

  12. Haase G, Tait D, Wiechen A (1993) Monte Carlo simulation of several gamma-emitting source and detector arrangements for determining corrections of self-attenuation and coincidence summation in gamma-spectrometry. Nucl Instrum Methods Phys Res A 329(3):483–492

    Article  Google Scholar 

  13. Barrera M, Ramos-Lerate I, Ligero RA, Casas-Ruiz M (1999) Optimization of sample height in cylindrical geometry for gamma spectrometry measurements. Nucl Instrum Methods Phys Res A 421:163–175

    Article  CAS  Google Scholar 

  14. Barrera M, Suarez-Llorens A, Casas-Ruiz M, Alonso JJ, Vidal J (2017) Theoretical determination of gamma spectrometry systems efficiency based on probability functions. Application to self-attenuation correction factors. Nucl Instrum Methods Phys Res A 854:31–39

    Article  CAS  Google Scholar 

  15. Barrera M, Casas-Ruiz M, Alonso JJ, Vidal J (2017) Precise determination of HPGe detector efficiency for gamma spectrometry measurements of environmental samples with variable geometry and density. Nukleonika 62(1):47–59

    CAS  Google Scholar 

  16. Abbas MI (2001) HPGe detector photopeak efficiency calculation including self-absorption and coincidence corrections for Marinelli beaker sources using compact analytical expressions. Appl Radiat Isot 54:761–768

    Article  CAS  Google Scholar 

  17. Selim YS, Abbas MI (2000) Analytical calculations of gamma scintillators efficiencies-II. Total efficiency for wide coaxial circular disk sources. Radiat Phys Chem 58:15–19

    Article  CAS  Google Scholar 

  18. Selim YS, Abbas MI, Fawzy MA (1998) Analytical calculations of gamma scintillators efficiencies-part I. Total efficiency for coaxial circular disk sources. Radiat Phys Chem 53:589–592

    Article  CAS  Google Scholar 

  19. Alfassi ZB, Lavi N (2005) The dependence of the counting efficiency of Marinelli beakers for environmental samples on the density of the samples. Appl Radiat Isot 63:87–92

    Article  CAS  Google Scholar 

  20. Melquiades FL, Appoloni CR (2001) Self-absorption correction for gamma spectrometry of powdered milk samples using Marinelli beaker. Appl Radiat Isot 55:697–700

    Article  CAS  Google Scholar 

  21. McMahon CA, Fegan MF, Wong J, Long SC, Ryan TP, Colgan PA (2004) Determination of self-absorption corrections for gamma analysis of environmental samples: comparing gamma absorption curves and spiked matrix-matched samples. Appl Radiat Isot 60:571–577

    Article  CAS  Google Scholar 

  22. Ortiz Ramírez PC (2015) Development of an absolute method for efficiency calibration of a coaxial HPGe detector for large volume sources. Nucl Instrum Methods Phys Res A 793:49–56

    Article  Google Scholar 

  23. Mohammad Modarresi S, Farhad Masoudi S, Karimi M (2017) A method for considering the spatial variations of dead layer thickness in HPGe detectors to improve the FEPE calculation of bulky samples. Radiat Phys Chem 130:291–296

    Article  Google Scholar 

  24. X-Ray Mass Attenuation Coefficients (2016) http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html Accessed 23 Dec 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Farhadd Masoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modarresi, S.M., Masoudi, S.F. & Karimi, M. A method for self-attenuation and sample-height correction for counting efficiency of HPGe using Marinelli beaker geometry. J Radioanal Nucl Chem 316, 129–137 (2018). https://doi.org/10.1007/s10967-018-5725-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5725-4

Keywords

Navigation