Skip to main content
Log in

Study on extraction of cobalt(II) by sodium laurate/pentan-1-ol/heptane/NaCl microemulsion system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A microemulsion consisting of sodium laurate, n-pentanol, n-heptane and NaCl solution was investigated for Co(II) extraction. The dilution method and conductivity method were used for the determination of structural parameters of sodium laurate/pentan-1-ol/heptane/NaCl microemulsion system. Co(II) was found to be extracted into the microemulsion phase due to the compound formation of [CoCl]+[R11COO], which was confirmed by the continuous variation of R11COONa concentration. Moreover, the effects of cosurfactant, the contact time, the phase ratios, PH and the NaCl concentration in feed solutions on the cobalt extraction yield were investigated. Under the optimum conditions, the extraction percentage of Co(II) could reach 98.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sivagami IN, Prasanna K, Santhoshkumar P, Jo YN, Seo GY, Lee CW (2017) Agar templated electrodeposition of binary zinc-cobalt alloy and formation of zinc-cobalt-carbon nanocomposite for application in secondary lithium batteries. J Alloy Compd 697:450–460. https://doi.org/10.1016/j.jallcom.2016.08.177

    Article  CAS  Google Scholar 

  2. Ansari SM, Bhor RD, Pai KR, Sen D, Mazumder S, Ghosh K, Kolekar YD, Ramana CV (2017) Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl Surf Sci 414:171–187. https://doi.org/10.1016/j.apsusc.2017.03.002

    Article  CAS  Google Scholar 

  3. Zhang W, Du X, Tan Y, Hu J, Li Z, Tang B (2017) Amorphous cobalt boron alloy @ graphene oxide nanocomposites for pseudocapacitor applications. J Mater Sci Technol 33(5):438–443. https://doi.org/10.1016/j.jmst.2016.06.012

    Article  Google Scholar 

  4. Wang Z-L, Yan J-M, Wang H-L, Jiang Q (2013) Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. J Power Sources 243:431–435. https://doi.org/10.1016/j.jpowsour.2013.05.193

    Article  CAS  Google Scholar 

  5. Hadi P, Barford J, McKay G (2013) Synergistic effect in the simultaneous removal of binary cobalt–nickel heavy metals from effluents by a novel e-waste-derived material. Chem Eng J 228:140–146. https://doi.org/10.1016/j.cej.2013.04.086

    Article  CAS  Google Scholar 

  6. Wang Q, Qin W, Chai L, Li Q (2014) Understanding the formation of colloidal mercury in acidic wastewater with high concentration of chloride ions by electrocapillary curves. Environ Sci Pollut Res Int 21(5):3866–3872. https://doi.org/10.1007/s11356-013-2379-1

    Article  CAS  Google Scholar 

  7. Repo E, Kurniawan TA, Warchol JK, Sillanpaa ME (2009) Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. J Hazard Mater 171(1–3):1071–1080. https://doi.org/10.1016/j.jhazmat.2009.06.111

    Article  CAS  Google Scholar 

  8. Kokkinos C, Economou A (2016) Microfabricated chip integrating a bismuth microelectrode array for the determination of trace cobalt(II) by adsorptive cathodic stripping voltammetry. Sens Actuators B Chem 229:362–369. https://doi.org/10.1016/j.snb.2016.01.148

    Article  CAS  Google Scholar 

  9. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4(1):37–59. https://doi.org/10.1002/cben.201600010

    Article  CAS  Google Scholar 

  10. Tsakiridis PE, Agatzini SL (2004) Simultaneous solvent extraction of cobalt and nickel in the presence of manganese and magnesium from sulfate solutions by Cyanex 301. Hydrometallurgy 72(3–4):269–278. https://doi.org/10.1016/s0304-386x(03)00180-4

    Article  CAS  Google Scholar 

  11. Hachemaoui A, Belhamel K (2017) Simultaneous extraction and separation of cobalt and nickel from chloride solution through emulsion liquid membrane using Cyanex 301 as extractant. Int J Miner Process 161:7–12. https://doi.org/10.1016/j.minpro.2017.02.002

    Article  CAS  Google Scholar 

  12. Gupta B, Deep A, Singh V, Tandon SN (2003) Recovery of cobalt, nickel, and copper from sea nodules by their extraction with alkylphosphines. Hydrometallurgy 70(1–3):121–129. https://doi.org/10.1016/s0304-386x(03)00052-5

    Article  CAS  Google Scholar 

  13. Mubarok MZ, Hanif LI (2016) Cobalt and nickel separation in nitric acid solution by solvent extraction using Cyanex 272 and Versatic 10. Proced Chem 19:743–750. https://doi.org/10.1016/j.proche.2016.03.079

    Article  CAS  Google Scholar 

  14. Wieszczycka K, Krupa M, Wojciechowska A, Wojciechowska I, Olszanowski A (2016) Equilibrium studies of cobalt(II) extraction with 2-pyridineketoxime from mixed sulphate/chloride solution. J Radioanal Nucl Chem 307:1155–1164. https://doi.org/10.1007/s10967-015-4246-7

    Article  CAS  Google Scholar 

  15. Zhu Z, Yoko P, Cheng CY (2017) Recovery of cobalt and manganese from nickel laterite leach solutions containing chloride by solvent extraction using Cyphos IL 101. Hydrometallurgy 169:213–218. https://doi.org/10.1016/j.hydromet.2017.02.002

    Article  CAS  Google Scholar 

  16. Watarai H (1997) Microemulsions in separation sciences. J Chromatogr A 780(1–2):93–102

    Article  CAS  Google Scholar 

  17. Dantas TNC, Neto AAD, Moura MCPA, Neto ELB, Forte KR, Leite RHL (2003) Heavy metals extraction by microemulsions. Water Res 37(11):2709–2717. https://doi.org/10.1016/s0043-1354(03)00072-1

    Article  Google Scholar 

  18. Gao S, Shen X, Chen Q, Gao H (2012) Solvent extraction of thorium(IV) using W/O microemulsion. Sci China Chem 55(9):1712–1718. https://doi.org/10.1007/s11426-012-4686-7

    Article  CAS  Google Scholar 

  19. Shan Z, Yang YZ, Tao Z, Jian H, Luo CH (2005) Uranium(VI) extraction by Winsor II microemulsion systems using trialkyl phosphine oxide. J Radioanal Nucl Chem 265(3):419–421

    Article  CAS  Google Scholar 

  20. Xia C-B, Yang Y-Z, Xin X-M, Wang S-X (2007) Extraction of rare earth metal samarium by microemulsion. J Radioanal Nucl Chem 275(3):535–540. https://doi.org/10.1007/s10967-007-6960-2

    Article  Google Scholar 

  21. Lou Z, Cui X, Zhang S, Feng X, Shan W, Xiong Y (2016) Extraction of Re(VII) from hydrochloric acid medium by N263/TBP/n-heptane/NaCl microemulsion. Hydrometallurgy 165:329–335. https://doi.org/10.1016/j.hydromet.2016.01.004

    Article  CAS  Google Scholar 

  22. Lu W, Lu Y, Liu F, Shang K, Wang W, Yang Y (2011) Extraction of gold(III) from hydrochloric acid solutions by CTAB/n-heptane/iso-amyl alcohol/Na2SO3 microemulsion. J Hazard Mater 186(2–3):2166–2170. https://doi.org/10.1016/j.jhazmat.2010.12.059

    Article  CAS  Google Scholar 

  23. Saidi M, Khalaf H (2004) Using microemulsion for recovery of uranium from phosphoric acid of Annaba (Algeria). Hydrometallurgy 74(1–2):85–91. https://doi.org/10.1016/j.hydromet.2004.01.002

    Article  CAS  Google Scholar 

  24. Liu F, Yang Y, Lu Y (2010) Extraction of germanium by the AOT microemulsion with N235 system. Ind Eng Chem Res 49(20):10005–10008

    Article  CAS  Google Scholar 

  25. Zheng Y, Fang L, Yan Y, Lin S, Liu Z, Yang Y (2016) Extraction of palladium (II) by a silicone ionic liquid-based microemulsion system from chloride medium. Sep Purif Technol 169:289–295. https://doi.org/10.1016/j.seppur.2016.06.022

    Article  Google Scholar 

  26. Tong Y, Han L, Yang Y (2012) Microemulsion extraction of Gold(III) from hydrochloric acid medium using ionic liquid as surfactant and extractant. Ind Eng Chem Res 51(50):16438–16443. https://doi.org/10.1021/ie301644t

    Article  CAS  Google Scholar 

  27. Zhu T, Yang YZ, Liu ZY, Xia CB (2006) Extraction of cobalt by CTMAB–pentanol–heptane–HCl Winsor II microemulsion systems. J Radioanal Nucl Chem 267(2):401–406

    Article  CAS  Google Scholar 

  28. Bardhan S, Kundu K, Chakraborty G, Saha SK, Paul BK (2015) The Schulman method of cosurfactant titration of the oil/water interface (dilution method): a review on a well-known powerful technique in interfacial science for characterization of water-in-oil microemulsions. J Surfactants Deterg 18(4):547–567. https://doi.org/10.1007/s11743-015-1694-6

    Article  CAS  Google Scholar 

  29. Chai J, Zhang H, Liu N, Liu N, Chai H, Liu Z (2014) Comparison between phase behavior of gemini imidazoliums and monomeric ionic liquid surfactants in W/O microemulsion systems. J Dispers Sci Technol 36(1):129–135. https://doi.org/10.1080/01932691.2014.890108

    Article  Google Scholar 

  30. Bowcott JE, Schulman JH (2015) Emulsions control of droplet size and phase continuity in transparent oil-water dispersions stabilized with soap and alcohol. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 59(4):283–290

    Google Scholar 

  31. Li X, He G, Zheng W, Xiao G (2010) Study on conductivity property and microstructure of TritonX-100/alkanol/n-heptane/water microemulsion. Colloids Surf A 360(1–3):150–158. https://doi.org/10.1016/j.colsurfa.2010.02.026

    CAS  Google Scholar 

  32. Gao Y, Zhang J, Xu H, Zhao X, Zheng L, Li X, Yu L (2006) Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-xylene ionic liquid microemulsions. ChemPhysChem 7(7):1554–1561. https://doi.org/10.1002/cphc.200600120

    Article  CAS  Google Scholar 

  33. Lagourette B, Peyrelasse J, Boned C, Clausse M (1979) Percolative conduction in microemulsion type systems. Nature 281:60–63

    Article  Google Scholar 

  34. Laguës M (1979) Electrical conductivity of microemulsions: a case of stirred percolation. J de Phys Lett 40(14):331–333. https://doi.org/10.1051/jphyslet:019790040014033100

    Article  Google Scholar 

  35. Klossek ML, Touraud D, Kunz W (2013) Highly and fully water dilutable sustainable microemulsions with dibasic esters as oil phase. ACS Sustain Chem Eng 1(6):603–610. https://doi.org/10.1021/sc300132x

    Article  CAS  Google Scholar 

  36. Fang J, Venable RL (1987) Conductivity study of the microemulsion system sodium dodecyl sulfate-hexylamine-heptane-water. J Colloid Interface Sci 116(1):269–277

    Article  CAS  Google Scholar 

  37. Liu J, Zhang X, Zhang H (2014) Water/AOT/IPM/alcohol reverse microemulsions: influence of salts and nonionic surfactants on structure and percolation behavior. J Chem Thermodyn 72:1–8. https://doi.org/10.1016/j.jct.2013.12.026

    Article  CAS  Google Scholar 

  38. Murashova NM, Levchishin SY, Yurtov EV (2014) Effect of Bis-(2-ethylhexyl)phosphoric acid on sodium Bis-(2-ethylhexyl)phosphate microemulsion for selective extraction of non-ferrous metals. J Surfactants Deterg 17(6):1249–1258. https://doi.org/10.1007/s11743-014-1598-x

    Article  CAS  Google Scholar 

  39. Wang W, Yang YZ, Zhao H, Guo QW, Lu WJ, Lu YM (2012) Extraction of europium by sodium oleate/pentanol/heptane/NaCl microemulsion system. J Radioanal Nucl Chem 292(3):1093–1098

    Article  CAS  Google Scholar 

  40. Wang S, Zheng Y, Zhang H, Yan Y, Xin X, Yang Y (2016) Ionic-liquid-type imidazolium gemini surfactant based water-in-oil microemulsion for extraction of gold from hydrochloric acid medium. Ind Eng Chem Res 55(10):2790–2797. https://doi.org/10.1021/acs.iecr.5b04115

    Article  CAS  Google Scholar 

  41. Lou Z, Guo C, Feng X, Zhang S, Xing Z, Shan W, Xiong Y (2015) Selective extraction and separation of Re(VII) from Mo(VI) by TritonX-100/N235/iso-amyl alcohol/n-heptane/NaCl microemulsion system. Hydrometallurgy 157:199–206. https://doi.org/10.1016/j.hydromet.2015.08.017

    Article  CAS  Google Scholar 

  42. ZhengHong LUO, XiaoLi ZHAN, PengYong YU (2004) Effect of addition of cosurfactant on the phase behaviour of oil-in-water aminosilicone oil microemulsion. Chin Chem Lett 15(9):1101–1104

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support by National Key Basic Research Program of China (2014CB748500) and National Natural Science Foundation of China (51578239, 51322805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhishan Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, F., Bai, Z. & Yang, X. Study on extraction of cobalt(II) by sodium laurate/pentan-1-ol/heptane/NaCl microemulsion system. J Radioanal Nucl Chem 315, 581–593 (2018). https://doi.org/10.1007/s10967-017-5685-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5685-0

Keywords

Navigation