Skip to main content
Log in

Comparison of γ-ray spectrometry and ICP-MS methods for measuring radioactive heat-producing elements of rocks: a case study on borehole samples from the Sichuan Basin, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We compared the consistency of γ-ray spectrometry and inductively coupled plasma mass spectrometry by analyzing measurement results of the radioactive heat-producing elements U, Th, and K from borehole samples. This analysis was based on 49 samples obtained from mudstone, siltstone, and carbonate rock, and 11 of the 15 control groups showed great consistency. The radioactive heat production (RHP) of carbonate rocks was relatively low (0.23–0.63 µW m−3) and was mainly contributed by U. Mudstone and siltstone have higher RHPs, which was 1.73 ± 0.46 and 2.04 ± 0.49 µW m−3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kramers JD, Kreissig K, Jones MQ (2001) Crustal heat production and style of metamorphism: a comparison between two Archean high grade provinces in the Limpopo Belt, southern Africa. Precambrian Res 112:149–163

    Article  CAS  Google Scholar 

  2. He LJ, Hu SB, Yang WC, Wang JY (2009) Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt. Earth Planet Sci Lett 277:525–538

    Article  CAS  Google Scholar 

  3. Verdoya M, Pasquale V, Chiozzi P, Kukkonen IT (1998) Radiogenic heat production in the Variscan crust: new determinations and distribution models in Corsica (northwestern Mediterranean). Tectonophysics 291:63–75

    Article  CAS  Google Scholar 

  4. Rudnick RL, McDonough WF, O’Connell RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145:395–411

    Article  CAS  Google Scholar 

  5. Kumar PS, Reddy GK (2004) Radioelements and heat production of an exposed Archaean crustal cross-section, Dharwar craton, south India. Earth Planet Sci Lett 224:309–324

    Article  CAS  Google Scholar 

  6. Kumar PS, Menon R, Reddy GK (2009) Heat production heterogeneity of the Indian crust beneath the Himalaya: insights from the northern Indian Shield. Earth Planet Sci Lett 283:190–196

    Article  CAS  Google Scholar 

  7. Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70

    Article  CAS  Google Scholar 

  8. Yamaguchi TI, Yamano M, Nagao T, Goto S (2001) Distribution of radioactive heat production around an active fault and in accretionary prisms of southwest Japan. Phys Earth Planet In 126:269–277

    Article  CAS  Google Scholar 

  9. Kumar PS, Menon R, Reddy GK (2007) The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian Shield. Earth Planet Sci Lett 254:39–54

    Article  CAS  Google Scholar 

  10. Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res 106:16387–16414

    Article  Google Scholar 

  11. Hasterok D, Chapman DS (2007) Continental thermal isostasy: 1. Methods and sensitivity. J Geophys Res 112:B06414

    Google Scholar 

  12. Brady RJ, Ducea MN, Kidder SB, Saleeby JB (2006) The distribution of radiogenic heat production as a function of depth in the Sierra Nevada Batholith, California. Lithos 86:229–244

    Article  CAS  Google Scholar 

  13. Ketcham RA (1996) An improved method for determination of heat production with γ-ray scintillation spectrometry. Chem Geol 130:175–194

    Article  CAS  Google Scholar 

  14. Chiozzi P, De Felice P, Fazio A, Pasquale V, Verdoya M (2000) Laboratory application of NaI (Tl) γ-ray spectrometry to studies of natural radioactivity in geophysics. Appl Radiat Isotopes 53:127–132

    Article  CAS  Google Scholar 

  15. Tzortzis M, Tsertos H, Christofides S, Christodoulides G (2003) γ-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiat Meas 37:221–229

    Article  CAS  Google Scholar 

  16. Abbady AG, El-Arabi AM, Abbady A (2006) Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt. Appl Radiat Isotopes 64:131–137

    Article  CAS  Google Scholar 

  17. Abbady A (2006) Radiological hazard and radiogenic heat production in some building materials in upper Egypt. J Radioanal Nucl Chem 268:243–246

    Article  CAS  Google Scholar 

  18. Xhixha G, Bezzon GP, Broggini C, Buso GP, Caciolli A, Callegari I, Bianchi SD, Fiorentini G, Guastaldi E, Xhixha MK, Mantovani F, Massa G, Menegazzo R, Mou L, Pasquini A, Alvarez CR, Shyti M (2013) The worldwide NORM production and a fully automated γ-ray spectrometer for their characterization. J Radioanal Nucl Chem 295:445–457

    Article  CAS  Google Scholar 

  19. Ibrahim N (1999) Natural activities of 238U, 232Th and 40 K in building materials. J Environ Radioact 43:255–258

    Article  CAS  Google Scholar 

  20. Foster IDL, Boardman J, Keay-Bright J, Meadows ME (2005) Land degradation and sediment dynamics in the South African Karoo. Int Assoc Hydrol Sci Publ 292:207–213

    CAS  Google Scholar 

  21. Hamby DM, Tynybekov AK (2000) Uranium, thorium and potassium in soils along the shore of lake Issyk-Kyol in the Kyrghyz RepublicEnviron. Monit Assess 73:101–108

    Article  Google Scholar 

  22. Fiorentini G, Lissia M, Mantovani F (2007) Geo-neutrinos and earth’s interior. Phys Rep 453:117–172

    Article  CAS  Google Scholar 

  23. Enomoto S, Ohtani E, Inoue K, Suzuki A (2007) Neutrino geophysics with KamLAND and future prospects. Earth Planet Sc Lett 258:147–159

    Article  CAS  Google Scholar 

  24. Dye S (2011) Geo-neutrinos as indicators of the origin and thermal history of the Earth. Rev Geophys 5(arXiv: 1111.6099), 0

  25. Rybach L (1988) In: Hänel L, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer, Dordrecht

    Google Scholar 

  26. Xhixha M (2014) New γ-ray spectrometry methods for estimating K, U, Th concentrations in rocks of the Sardinia Batholith. University Of Sassari

  27. Qiu NS (2003) Geothermal regime in the Qaidam basin, northeast Qinghai-Tibet Plateau. Geol Mag 140:707–719

    Article  Google Scholar 

  28. Chiozzi P, Pasquale V, Verdoya M (2002) Naturally occurring radioactivity at the Alps-Apennines transition. Radiat Meas 35:147–154

    Article  CAS  Google Scholar 

  29. Pasquale V, Verdoya M, Chiozzi P (2001) Radioactive heat generation and its thermal effects in the Alps-Apennines boundary zone. Tectonophysics 331:269–283

    Article  CAS  Google Scholar 

  30. Abbady AG (2010) Evaluation of heat generation by radioactive decay of sedimentary rocks in Eastern Desert and Nile Valley, Egypt. Appl Radiat Isotopes 68:2020–2024

    Article  CAS  Google Scholar 

  31. Čermák V, Haenel R (1982) Geothermics and geothermal energy. Schweizerbart Science Publishers, Schweizerbart

    Google Scholar 

  32. Čermák V (1982) Crustal temperature and mantle heat flow in Europe. Tectonophysics 83:123–142

    Article  Google Scholar 

  33. Roque A, Ribeiro FB (1997) Radioactivity and radiogenic heat production in the sediments of the São Francisco sedimentary basin, Central Brazil. Appl Radiat Isotopes 48:413–422

    Article  CAS  Google Scholar 

  34. Ribeiro FB, Roque A (2001) Vertical distributions of uranium, thorium and potassium and of volumetric heat production rates in the sediments of the São Francisco basin, Central Brazil. Appl Radiat Isotopes 55:393–405

    Article  CAS  Google Scholar 

  35. Vilà M, Fernández M, Jiménez-Munt I (2010) Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490:152–164

    Article  Google Scholar 

  36. Murthy VR, Van Westrenen W, Fei Y (2003) Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423:163–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Science Foundation of China (Grant No. 41690133, 41772248), the “National Science and Technology Major Project” of China (Grant No. 2017ZX05008004) and the Beijing Training Project of Science and Technology Nova and Leading Talent (Grant No. Z171100001117163). The first author is grateful to the Chinese Scholarship Council (CSC) for supporting him stay in the University of Glasgow as a sponsored researcher. We thank Dr. Bing Xu and Mu Liu for their help in the sample analysis and the reviewers for their constructive suggestions, which clarified many points of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanqing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Xu, M., Qiu, N. et al. Comparison of γ-ray spectrometry and ICP-MS methods for measuring radioactive heat-producing elements of rocks: a case study on borehole samples from the Sichuan Basin, China. J Radioanal Nucl Chem 314, 1527–1537 (2017). https://doi.org/10.1007/s10967-017-5576-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5576-4

Keywords

Navigation