Skip to main content
Log in

Quantification of trace fluorine concentrations in soil and food samples from fluoride affected region by in situ current normalized particle induced gamma-ray emission method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Particle induced gamma-ray emission method was used to quantify total fluorine (F) concentrations in soil and food samples obtained from fluoride affected as well as non-affected areas of Punjab state, India. Samples, standards and reference materials in pellet form with lithium as in situ current normalizer were irradiated using 4 MeV proton beam from the tandem particle accelerator. Characteristic prompt gamma rays at 197 keV from 19F and 478 keV from 7Li were measured using a HPGe detector system. Fluorine concentrations in soil and food samples were 279–3138 and 51–211 mg kg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tebbutt THY (1983) Relationship between natural water quality and health. UNESCO, Paris

    Google Scholar 

  2. Agalakova NI, Gusev GP (2012) Molecular mechanisms of cytotoxicity and apoptosis induced by inorganic fluoride. ISRN Cell Biol 2012:1–6. doi:10.5402/2012/403835

    Article  Google Scholar 

  3. Fawell J, Bailey K, Chilton J et al (2006) Fluoride in drinking-water. WHO, Cornwall

    Google Scholar 

  4. Salah H, Arab N (2007) Application of PIGE to determine fluorine concentration in human teeth: contribution to fluorosis study. J Nucl Radiochem Sci 8:31–34

    Article  CAS  Google Scholar 

  5. Reddy DR (2009) Neurology of endemic skeletal fluorosis. Neurol India 57:7–12. doi:10.4103/0028-3886.48793

    Article  Google Scholar 

  6. Susheela AK (1999) Fluorosis management programme in India. India Curr Sci 77:1250–1256

    Google Scholar 

  7. State Profile, Ground Water Scenario of Punjab, Central Ground Water Board, Punjab, http://cgwb.gov.in/gw_profiles/st_Punjab.htm. Accessed 15 July 2016

  8. Farooqi AS, Arshed W, Akanle OA et al (1992) Fluorine determination in diet samples using cyclic INAA and PIGE analysis. J Radioanal Nucl Chem 161:71–78. doi:10.1007/BF02034881

    Article  CAS  Google Scholar 

  9. Ando M, Tadano M, Yamamoto S et al (2001) Health effects of fluoride pollution caused by coal burning. Sci Total Environ 271:107–116. doi:10.1016/S0048-9697(00)00836-6

    Article  CAS  Google Scholar 

  10. Singh K, Lataye DH, Wasewar KL (2013) Removal of fluoride from aqueous solution: status and techniques. Desalination Water Treat 51:3233–3247. doi:10.1080/19443994.2012.749036

    Article  CAS  Google Scholar 

  11. Eyde B (1985) Determination of fluoride in fertilizers by means of the ion-selective electrode. Anal Chem 320:41–44

    Article  CAS  Google Scholar 

  12. Thesai S, Krishnasamy J, Sundaram R et al (2014) Incidence and effects of fluoride in Indian natural ecosystem: a review. Adv Appl Sci Res 5:173–185

    Google Scholar 

  13. Vithanage M, Bhattacharya P (2015) Fluoride in drinking water: health effects and remediation, vol 5. Environmental chemistry for a sustainable world. Springer, New York, pp 105–151. doi:10.1007/978-3-319-11906-9_4

    Google Scholar 

  14. Light TS, Mannion RF (1969) Microdetermination of fluorine in organic compounds by potentiometric titration using a fluoride electrode. Anal Chem 41:107–111

    Article  CAS  Google Scholar 

  15. Eyde B (1983) Determination of acid soluble fluoride in soils by means of an ion-selective electrode. Fresenius Z Anal Chem 316:299–301. doi:10.1007/BF00468924

    Article  CAS  Google Scholar 

  16. Ponikvar M, Stibilj V, Žemva B (2007) Daily dietary intake of fluoride by Slovenian Military based on analysis of total fluorine in total diet samples using fluoride ion selective electrode. Food Chem 103:369–374. doi:10.1016/j.foodchem.2006.07.032

    Article  CAS  Google Scholar 

  17. Saha JK, Kundu S (2003) Determination of fluoride in soil water extract through ion chromatography. Commun Soil Sci Plant Anal 34:181–188. doi:10.1081/CSS-120017424

    Article  CAS  Google Scholar 

  18. Räisänen J (2009) “Particle induced gamma emission: PIGE” (Chapter 7). In: Wang Y, Nastasi M (eds) Handbook of modern ion beam materials analysis. Materials Research Society, Warrendale, pp 147–176

    Google Scholar 

  19. Srivastava A, Chhillar S, Singh D et al (2014) Determination of fluorine concentrations in soil samples using proton induced gamma-ray emission. J Radioanal Nucl Chem 302:1461–1464. doi:10.1007/s10967-014-3661-5

    Article  CAS  Google Scholar 

  20. Chhillar S, Acharya R, Pai RV et al (2012) A simple and sensitive particle induced gamma-ray emission method for non-destructive quantification of lithium in lithium doped Nd2Ti2O7 ceramic sample. J Radioanal Nucl Chem 293:437–441. doi:10.1007/s10967-012-1764-4

    Article  CAS  Google Scholar 

  21. Chhillar S, Acharya R, Vittal Rao TV et al (2013) Non-destructive compositional analysis of sol–gel synthesized lithium titanate (Li2TiO3) by particle induced gamma-ray emission and instrumental neutron activation analysis. J Radioanal Nucl Chem 298:1597–1603. doi:10.1007/s10967-013-2609-5

    Article  CAS  Google Scholar 

  22. Chhillar S, Acharya R, Tripathi R, Sodaye S, Sudarshan K, Rout PC, Mukerjee SK, Pujari PK (2015) Compositional characterization of lithium titanate ceramic samples by determining Li, Ti and O concentrations simultaneously using PIGE at 8 MeV proton beam. J Radioanal Nucl Chem 305:463–467. doi:10.1007/s10967-015-4037-1

    Article  CAS  Google Scholar 

  23. Roelandts I, Robaye G, Weber G, Delbrouck-Habaru JM (1986) The application of proton-induced gamma-ray emission (PIGE) analysis to the rapid determination of fluorine in geological materials. Chem Geol 54:35–42

    Article  CAS  Google Scholar 

  24. Samudralwar DL, Robertson JD (1993) Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis. J Radioanal Nucl Chem 169:259–267

    Article  CAS  Google Scholar 

  25. Savidou A, Aslanoglou X, Paradellis T, Pilakouta M (1999) Proton induced thick target γ-ray yields of light nuclei at the energy region Ep = 1.0−4.1 MeV. Nucl Instrum Methods B 152:12–18

    Article  CAS  Google Scholar 

  26. Nsouli B, Bejjani A, Della Negra S et al (2010) Ion beam analysis and PD-MS as new analytical tools for quality control of pharmaceuticals: comparative study from fluphenazine in solid dosage forms. Anal Chem 82:7309–7318

    Article  CAS  Google Scholar 

  27. Chhillar S, Acharya R, Sodaye S et al (2012) Application of particle induced gamma-ray emission for non-destructive determination of fluorine in barium borosilicate glass samples. J Radioanal Nucl Chem 294:115–119. doi:10.1007/s10967-011-1525-9

    Article  CAS  Google Scholar 

  28. Elekes Z, Uzonyi I, Gratuze B et al (2000) Contribution of PIGE technique to the study of obsidian glasses. Nucl Instrum Methods B 161–163:836–841

    Article  Google Scholar 

  29. Mosbah M, Metrich N, Massiot P (1991) PIGME fluorine determination using a nuclear microprobe with application to glass inclusions. Nucl Instrum Methods B 58:227–231

    Article  Google Scholar 

  30. Venkatesh K, Chhillar S, Kamble GS et al (2014) Determination of boron concentration in borosilicate glass, boron carbide and graphite samples by conventional wet-chemical and nuclear analytical methods. J Radioanal Nucl Chem 302:1425–1428. doi:10.1007/s10967-014-3552-9

    Article  CAS  Google Scholar 

  31. Macias ES, Radcliffe CD (1978) Proton induced γ-ray analysis of atmospheric aerosols for carbon, nitrogen, and sulfur composition. Anal Chem 50:1120–1124

    Article  CAS  Google Scholar 

  32. Valkovic O, Jaksic M, Fazinic S et al (1995) Quality control of PIXE and PIGE nuclear analytical techniques in geological and environmental applications. Nucl Instrum Methods B 99:372–375

    Article  CAS  Google Scholar 

  33. Roelandts I, Robaye G, Weber G et al (1987) Determination of fluorine by proton-induced gamma-ray emission (PIGE) spectrometry in igneous and metamorphic charnockitic rocks from Rogaland (S. W. Norway). J Radioanal Nucl Chem 112:453–460. doi:10.1007/BF02132377

    Article  CAS  Google Scholar 

  34. Farooqi AS, Arshed W, Akanle OA et al (1992) Fluorine determination in diet samples using cyclic INAA and PIGE analysis. J Radioanal Nucl Chem 161:71–78

    Article  CAS  Google Scholar 

  35. Carvalho ML, Karydas AG, Casaca C et al (2001) Fluorine determination in human healthy and carious teeth using the PIGE technique. Nucl Instrum Methds B 179:561–567

    Article  CAS  Google Scholar 

  36. Sastri CS, Banerjee A, Sauvage T et al (2013) Fluorine determination in different types of ivory by PIGE technique. J Radioanal Nucl Chem 298:311–315. doi:10.1007/s10967-012-2410-x

    Article  CAS  Google Scholar 

  37. Roelandts I (1985) Determination of fluorine in eighty international geochemical reference samples by proton induced gamma ray emision spectrometry (PIGE). Geostand Newsl 9:191–197

    Article  CAS  Google Scholar 

  38. Barthos R, Méhn D, Demortier A et al (2005) Functionalization of single-walled carbon nanotubes by using alkyl-halides. Carbon 43:321–325. doi:10.1016/j.carbon.2004.09.018

    Article  CAS  Google Scholar 

  39. Xie ZM, Ye ZH, Wong MH (2001) Distribution characteristics of fluoride and aluminum in soil profiles of an abandoned tea plantation and their uptake by six woody species. Environ Int 26:341–346. doi:10.1016/S0160-4120(01)00010-1

    Article  CAS  Google Scholar 

  40. Borges AR, François LL, Welz B et al (2014) Determination of fluorine in plant materials via calcium mono-fluoride using high-resolution graphite furnace molecular absorption spectrometry with direct solid sample introduction. J Anal At Spectrom 29:1564–1569. doi:10.1039/c4ja00067f

    Article  CAS  Google Scholar 

  41. Tripathi R, Sodaye S, Tomar BS (2004) Oxygen determination in metal foils using backscattering spectrometry. Nucl Instrum Methods A 533:282–286. doi:10.1016/j.nima.2004.06.173

    Article  CAS  Google Scholar 

  42. Mukhopadhyay PK (2001) The operating software of the PHAST PC-MCA Card. Proceedings of symposium on intelligent nuclear instrumentation-2001, Bhabha Atomic Research Centre, Mumbai

  43. Gurkan R, Altunay N, Korkmaz S (2015) A new preconcentration procedure to quantify total acid hydrolyzed fluoride in selected beverages and food by spectrophotometry. Anal Methods 7:5081–5091. doi:10.1039/c5ay00672d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors from Pune University thank Board of Research in Nuclear Sciences (BRNS), DAE, Government of India for the financial assistance for the Project under BARC-SP Pune University MoU. Authors thank Head, IADD, Mr. S. K. Gupta, Mr. A. Agarwal and FOTIA staff of IADD, BARC for their help during PIGE experiment. Authors also thank Prof. S. Panda, Director, IOP, Prof. P. V. Satyam, Mr. A. K. Behera, Dr. D. K. Ray, IOP and IBL, IOP operation crew members for their help and support. We thank Dr. K. B. Dasari, Ex-Ph.D Scholar, BARC for his help in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Acharya or N. S. Rajurkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhorge, P.S., Acharya, R., Rajurkar, N.S. et al. Quantification of trace fluorine concentrations in soil and food samples from fluoride affected region by in situ current normalized particle induced gamma-ray emission method. J Radioanal Nucl Chem 311, 1803–1809 (2017). https://doi.org/10.1007/s10967-016-5118-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5118-5

Keywords

Navigation