Skip to main content
Log in

Determination of vanadium in titanate-based ferroelectrics by INAA with discriminating gamma-ray spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Instrumental neutron activation analysis was used for determination of vanadium mass fraction in crystals of incipient ferroelectric strontium titanate and ferroelectric barium titanate. In order to improve vanadium limit of detection, discriminating gamma-ray spectrometry was used by inserting an absorption filter between the samples and an HPGe detector. The use of the absorption lead filter 6-mm thick yielded improvement of the vanadium limit of detection by a factor of two. The vanadium mass fraction determined in a quality control sample, which was NIST standard reference material SRM 1648 Urban Particulate Matter, was in close agreement with the certified value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kleemann W, Kütz S, Rytz D (1987) Cluster glass and domain state properties of KTaO3 Li. Europhys Lett 4:239–245

    Article  CAS  Google Scholar 

  2. Trepakov V, Skvortsov A, Poletaev N, Potůček Z, Nuzhnyy D, Jastrabik L, Dejneka A (2011) An optical and dielectric spectroscopy study of Er3+-doped KTaO3. Phys Status Solidi B 248:2908–2915

    Article  CAS  Google Scholar 

  3. Stokowski SE, Schawlow AL (1969) Dielectric-related optical line shifts in SrTiO3:Cr3+. Phys Rev 178:464–470

    Article  CAS  Google Scholar 

  4. Trepakov VA, Babinsky AV, Vikhnin VS, Syrnikov PP (1988) Photoinduced transformation of defects in crystals with soft phonon modes: photoluminescence of Cr3+ zero phonon r-line in KTaO3, SrTiO3 and (K, Li) TaO3. Ferroelectrics 83:127–133

    Article  Google Scholar 

  5. Bryknar Z, Trepakov V, Potůček Z, Jastrabík L (2000) Luminescence spectra of SrTiO3:Mn4+. J Lumin 87–89:605–607

    Article  Google Scholar 

  6. Bryknar Z (2004) Application of spectroscopic probes in study of ferroelectrics. Ferroelectrics 298:43–48

    Article  CAS  Google Scholar 

  7. Trepakov VA, Vikhnin VS, Kapphan S, Jastrabik L, Licher J, Syrnikov PP (2000) Zero-phonon optical lines of impurity centers in ABO3 perovskite-like ferroelectrics. J Lumin 87–89:1126–1129

    Article  Google Scholar 

  8. Vikhnin V, Trepakov V, Smutný F, Jastrabík L (1996) “Local phase transitions” and related relaxation processes in incipient ferroelectrics with a perovskite-like structure. Ferroelectrics 176:7–24

    Article  CAS  Google Scholar 

  9. Kennedy G, Zikovsky L (1982) Improvement of sensitivity in neutron activation analysis by selective absorption of high-intensity low-energy gamma-rays. J Radioanal Chem 72:295–304

    Article  CAS  Google Scholar 

  10. Kučera J, Soukal L (1988) Homogeneity tests and certification analyses of coal fly ash reference materials by instrumental neutron activation analysis. J Radioanal Nucl Chem 121:245–259

    Article  Google Scholar 

  11. Řanda Z, Kučera J, Soukal L (2003) Elemental characterization of the new Czech meteorite Morávka by neutron and photon activation analysis. J Radioanal Nucl Chem 257:275–283

    Article  Google Scholar 

  12. Kučera J, Zeisler R (2004) Do we need radiochemical separation in activation analysis? J Radioanal Nucl Chem 262:255–260

    Article  Google Scholar 

  13. Kučera J (2007) Methodological developments and applications of neutron activation analysis. J Radioanal Nucl Chem 273:273–280

    Article  Google Scholar 

  14. Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta B 66:193–241

    Article  CAS  Google Scholar 

  15. Lindstrom RM (2006) Toolkits for nuclear science: data and spreadsheets. J Radioanal Nucl Chem 270:335–337

    Article  CAS  Google Scholar 

  16. NuDat 2.6 (2016) http://nndc.bnl.gov/nudat2/. Accessed 11 Jun 2016

  17. Řanda Z (1976) Analytical possibilities of epithermal neutron activation in routine INAA of mineral materials. J Radiochem Radioanal Lett 24:157–168

    Google Scholar 

  18. Kučera J (1979) Epithermal neutron activation analysis of trace elements in biological materials. J Radiochem Radioanal Lett 38:229–246

    Google Scholar 

  19. Řanda Z, Soukal L, Mizera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macromycetes (mushrooms). J Radioanal Nucl Chem 264:67–76

    Article  Google Scholar 

  20. Mughabghab SF (2006) Atlas of neutron resonances, 5th edn. Elsevier Science, Amsterdam

    Google Scholar 

  21. Steinnes E (2008) INAA of geological materials using a combination of epithermal activation and Compton suppression: prediction of possibilities. J Radioanal Nucl Chem 278:313–317

    Article  CAS  Google Scholar 

  22. Landsberger S, Peshev S (1996) Compton suppression neutron activation analysis: past, present and future. J Radioanal Nucl Chem 202:201–224

    Article  CAS  Google Scholar 

  23. National Institute of Standards and Technology (1998) Certificate of analysis, standard reference material 1648, Urban Particulate Matter. Gaithersburg

  24. Kučera J, Soukal L (1998) Low uncertainty determination of manganese and vanadium in environmental and biological reference materials by instrumental neutron activation analysis. Fresenius J Anal Chem 360:415–418

    Article  Google Scholar 

Download references

Acknowledgements

S. Kapphan and H. Hesse are acknowledged for providing the ferroelectric crystal samples. The work was supported by the Czech Science Foundation (Grant No. P108/12/G108) and by Grant Agency of the Czech Technical University in Prague (Grant No. SGS16/244/OHK4/3T/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kameník.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameník, J., Dragounová, K., Kučera, J. et al. Determination of vanadium in titanate-based ferroelectrics by INAA with discriminating gamma-ray spectrometry. J Radioanal Nucl Chem 311, 1333–1338 (2017). https://doi.org/10.1007/s10967-016-5101-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5101-1

Keywords

Navigation