Skip to main content
Log in

A CZT-based radioxenon detection system in support of the Comprehensive Nuclear-Test-Ban Treaty

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, a prototype radioxenon detection system was designed, developed and tested at Oregon State University to study the response of CdZnTe (CZT) detectors to xenon radioisotopes for monitoring nuclear explosions. The detector utilizes two coplanar CZT detectors and measures xenon radioisotopes through beta–gamma coincidence detection between the two detection elements. The CZT-based detection system offers excellent energy resolution and background count rate compared with scintillator-based beta–gamma coincidence detectors currently in operation at the IMS stations. In this paper, we briefly discuss the detector design and report our recent measurement results with 131mXe, 133mXe, and 133Xe produced in the TRIGA reactor at OSU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Summary of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) (1996) Inventory of International Nonproliferation Organizations and Regimes. Center for Nonproliferation Studies, pp 1–30

  2. The Global Verification Regime and the International Monitoring System (2001) Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

  3. Auer M, Kumberg T, Sartorius H, Wernsperger B, Schlosser C (2010) Ten Years of Development of Equipment for Measurement of Atmospheric Radioactive Xenon for the Verification of the CTBT. Pure Appl Geophys 167(4–5):471–486

    Article  Google Scholar 

  4. McIntyre JI, Abel KH, Bowyer TW, Hayes JC, Heimbigner TR, Panisko ME, Reeder PL, Thompson RC (2001) Measurements of ambient radioxenon levels using the automated radioxenon sampler/analyzer (ARSA). J Radioanal Nucl Chem 248(3):629–635

    Article  CAS  Google Scholar 

  5. Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) SAUNA—a system for automatic sampling, processing, and analysis of radioactive xenon. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 508(3):542–553

    Article  CAS  Google Scholar 

  6. Prelovskii VV, Kazarinov NM, Donets AY, Popov VY, Popov IY, Skirda NV (2007) The ARIX-03F mobile semiautomatic facility for measuring low concentrations of radioactive xenon isotopes in air and subsoil gas. Instrum Exp Tech 50(3):393–397

    Article  CAS  Google Scholar 

  7. Fontaine J-P, Pointurier F, Blanchard X, Taffary T (2004) Atmospheric xenon radioactive isotope monitoring. J Environ Radioact 72(1–2):129–135

    Article  CAS  Google Scholar 

  8. Bowyer TW, Biegalski SR, Cooper M, Eslinger PW, Haas D, Hayes JC, Miley HS, Strom DJ, Woods V (2011) Elevated radioxenon detected remotely following the Fukushima nuclear accident. J Environ Radioact 102(7):681–687

    Article  CAS  Google Scholar 

  9. Xie F, He X, Jiang W, Zhang X, Shi Q, Wu S, Liu L, Zhang C, Chen L (2014) Development of a radioxenon measurement system and its application in monitoring Fukushima nuclear accident. Radiat Phys Chem 97:85–89

    Article  CAS  Google Scholar 

  10. Orr B, Schöppner M, Tinker R, Plastino W (2013) Detection of radioxenon in Darwin, Australia following the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 126:40–44

    Article  CAS  Google Scholar 

  11. Shilian W, Qi L, Qinghua M, Zhanying C, Yungang Z, Huijuan L, Huaimao J, Yinzhong C, Shujiang L, Xinjun Z, Yuanqing F, Ling W, Yun L (2013) Radioxenon monitoring in Beijing following the Fukushima Daiichi NPP accident. Appl Radiat Isot 81:344–347

    Article  Google Scholar 

  12. Ringbom A, Elmgren K, Lindh K, Peterson J, Bowyer TW, Hayes JC, McIntyre JI, Panisko M, Williams R (2009) Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006. J Radioanal Nucl Chem 282(3):773–779

    Article  CAS  Google Scholar 

  13. Saey PRJ, Bean M, Becker A, Coyne J, d’Amours R, De Geer L-E, Hogue R, Stocki TJ, Ungar RK, Wotawa G (2007) A long distance measurement of radioxenon in Yellowknife, Canada, in late October 2006. Geophys Res Lett 34(20):1–5

    Article  Google Scholar 

  14. Becker A, Wotawa G, Ringbom A, Saey PRJ (2008) Backtracking of noble gas measurements taken in the aftermath of the announced October 2006 event in North Korea by means of the PTS methods in nuclear source estimation and reconstruction. Geophys Res Abstr 10:1–4

    Google Scholar 

  15. Wotawa G (2013) Meteorological analysis of the detection of xenon and barium/lanthanum isotopes in May 2010 in Eastern Asia. J Radioanal Nucl Chem 44(20):337–349

    Google Scholar 

  16. Wright CM (2013) Low-Yield Nuclear Testing by North Korea in May 2010: assessing the Evidence with Atmospheric Transport Models and Xenon Activity Calculations. Sci Glob Secur 21(1):3–52

    Article  Google Scholar 

  17. Ringbom A, Axelsson A, Aldener M, Auer M, Bowyer TW, Fritioff T, Hoffman I, Khrustalev K, Nikkinen M, Popov V, Popov Y, Ungar K, Wotawa G (2013) Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013. J Environ Radioact 128:47–63

    Article  Google Scholar 

  18. Kutsher K (2014) Atmospheric transport modeling of radio-xenon detections possibly related to the announced nuclear test in North Korea on February 12, 2013. Nuclear Forensics and Security meeting

  19. Bläckberg L, Fritioff T, Mårtensson L, Nielsen F, Ringbom A, Sjöstrand H, Klintenberg M (2013) Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 714:128–135

    Article  Google Scholar 

  20. Ranjbar L, Farsoni AT, Becker EM (2016) Preliminary measurements with a two-element CZT-based radioxenon detector. Nucl Instrum Methods Phys Res Sect A (Submitted)

  21. http://redlen.ca/. Accessed Jan 2016

  22. http://3dprintingforbeginners.com/filamentprimer-2. Accessed Feb 2016

  23. http://www.pchemlabs.com/product.asp?pid=2144. Accessed Jan 2015

  24. Amman MS, Luke PN (1997) Coplanar-grid detector with single-electrode readout. In: Optical science, engineering and instrumentation’97, pp 205–213

  25. He Z, Knoll GF, Wehe DK (1998) Direct measurement of product of the electron mobility and mean free drift time of CdZnTe semiconductors using position sensitive single polarity charge sensing detectors. J Appl Phys 84(10):5566–5569

    Article  CAS  Google Scholar 

  26. Alemayehu B, Farsoni AT, Ranjbar L, Becker EM (2014) A well-type phoswich detector for nuclear explosion monitoring. J Radioanal Nucl Chem 301(2):323–332

    Article  CAS  Google Scholar 

  27. Farsoni AT, Alemayehu B, Alhawsawi A, Becker EM (2013) A Phoswich Detector With Compton Suppression Capability for Radioxenon Measurements. IEEE Trans Nucl Sci 60(1):456–464

    Article  CAS  Google Scholar 

  28. Hennig W, Warburton WK, Fallu-Labruyere A, Sabourov K, Cooper MW, McIntyre JI, Gleyzer A, Bean M, Korpach P, Ungar K et al (2009) Radioxenon measurements with the Phoswatch detector system. In: Proceedings of the 2009 monitoring research review: ground-based nuclear explosion monitoring technologies, UR-09-05276. 2, pp 641–652

  29. Hennig W, Tan H, Warburton WK, McIntyre JI (2005) Digital pulse shape analysis with phoswich detectors to simplify coincidence measurements of radioactive xenon. In: Proceedings of the 27th seismic research review: ground-based nuclear explosion monitoring technologies, pp 787–794

  30. Cooper MW, McIntyre JI, Bowyer TW, Carman AJ, Hayes JC, Heimbigner TR, Hubbard CW, Lidey L, Litke KE, Morris SJ, Ripplinger MD, Suarez R, Thompson R (2007) Redesigned β–γ radioxenon detector. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 579(1):426–430

    Article  CAS  Google Scholar 

  31. Schulze J, Auer M, Werzi R (2000) Low level radioactivity measurement in support of the CTBTO. Appl Radiat Isot 53(1):23–30

    Article  CAS  Google Scholar 

  32. McIntyre JI, Bowyer TW, Reeder PL (2006) Calculation of minimum detectable concentration levels of radioxenon isotopes using the PNNL ARSA system. Pacific Northwest National Laboratory

  33. Hennig W, Cox CE, Asztalos SJ, Tan H, Franz PJ, Grudberg PM, Warburton WK (2011) Study of silicon detectors for high-resolution radioxenon measurements. Nucl Instrum Methods Phys Res A 652:216–220

    Article  Google Scholar 

  34. Goha H, Auer M (2010) 1st IMS noble gas system certification_review of certification requirements. In: Proceedings of 2010 INGE workshop (day 2, session 5)

  35. Foltz Biegalski KM, Biegalski SR (2001) Determining detection limits and minimum detectable concentrations for noble gas detectors utilizing beta–gamma coincidence systems. J Radioanal Nucl Chem 248(3):673–682

    Article  Google Scholar 

  36. Le Petit G, Armand P, Brachet G, Taffary T, Fontaine JP, Achim P, Blanchard X, Piwowarczyk JC, Pointurier F (2008) Contribution to the development of atmospheric radioxenon monitoring. J Radioanal Nucl Chem 276(2):391–398

    Article  CAS  Google Scholar 

  37. Cox CE, Hennig W, Huber AC, Warburton WK, Grudberg PM, Asztalos SJ, Tan H, Biegalski S (2013) A 24-element Silicon PIN diode detector for high resolution radioxenon measurements using simultaneous X-ray and electron spectroscopy. In: Nuclear science symposium and medical imaging conference (NSS/MIC), 2013 IEEE, pp 1–7

  38. Bläckberg L, Fay A, Jõgi I, Biegalski S, Boman M, Elmgren K, Fritioff T, Johansson A, Mårtensson L, Nielsen F, Ringbom A, Rooth M, Sjöstrand H, Klintenberg M (2011) Investigations of surface coatings to reduce memory effect in plastic scintillator detectors used for radioxenon detection. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 656(1):84–91

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration Award Number DE-NA0002534. The authors would also like to thank S. Smith from the Radiation Center of the Oregon State University for his contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, L., Farsoni, A.T. & Becker, E.M. A CZT-based radioxenon detection system in support of the Comprehensive Nuclear-Test-Ban Treaty. J Radioanal Nucl Chem 310, 969–978 (2016). https://doi.org/10.1007/s10967-016-4872-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4872-8

Keywords

Navigation