Skip to main content
Log in

Toward sufficient reduction of radio-impurities for 32Si sediment age dating

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This project is focused on developing a geochronology tool enabling age dating of coastal marine sediments in the 100–1000 year age range. The technique employs the 32Si/32P radio-chronometer with an ultra-low-background gas proportional beta detector with a background count rate approaching 10 counts per day (cpd), which will require significant decontamination of radiogenic nuclides present in the original sediment samples. This paper describes the multiple physical and chemical separation methods employed to maintain a high final chemical yield of P while reducing the radiogenic contributions. The final purified 32P samples had, on average 100 ± 7 % chemical yields with no quantifiable gamma emissions present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brandenberger JM, Crecelius EA, Louchouarn P (2008) Historical inputs and natural recovery rates for heavy metals and organic biomarkers in Puget Sound during the 20th century. Environ Sci Technol 42(18):6786–6790. doi:10.1021/Es703099c

    Article  CAS  Google Scholar 

  2. Brandenberger JM, Louchouarn P, Crecelius EA (2011) Natural and post-urbanization signatures of hypoxia in two basins of puget sound: historical reconstruction of redox sensitive metals and organic matter inputs. Aquat Geochem 17(4–5):645–670. doi:10.1007/s10498-011-9129-0

    Article  CAS  Google Scholar 

  3. Fifield LK, Morgenstern U (2009) Silicon-32 as a tool for dating the recent past. Quat Geochronol 4(5):400–405. doi:10.1016/j.quageo.2008.12.006

    Article  Google Scholar 

  4. Kharkar DP, Turekian KK, Scott MR (1969) Comparison of sedimentation rates obtained by 32Si and uranium decay series determinations in some siliceous antarctic cores. Earth Planet Sci Lett 6(1):61–68. doi:10.1016/0012-821x(69)90175-7

    Article  CAS  Google Scholar 

  5. Krishnas S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sc Lett 11(5):407–459. doi:10.1016/0012-821x(71)90202-0

    Article  Google Scholar 

  6. Morgenstern U, Fifield LK, Zondervan A (2000) New frontiers in glacier ice dating: measurement of natural 32Si by AMS. Nucl Instrum Methods B 172:605–609. doi:10.1016/S0168-583x(00)00224-X

    Article  CAS  Google Scholar 

  7. Morgenstern U, Geyh MA, Kudrass HR, Ditchburn RG, Graham IJ (2001) 32Si dating of marine sediments from Bangladesh. Radiocarbon 43(2B):909–916

    CAS  Google Scholar 

  8. Morgenstern U, Ditchburn RG, Vologina EG, Sturm M (2013) 32Si dating of sediments from Lake Baikal. J Paleolimnol 50(3):345–352. doi:10.1007/s10933-013-9729-3

    Article  Google Scholar 

  9. Kuo LJ, Louchouarn P, Herbert BE, Brandenberger JM, Wade TL, Crecelius E (2011) Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion. Environ Pollut 159(4):983–990. doi:10.1016/j.envpol.2010.12.012

    Article  CAS  Google Scholar 

  10. Archer DW, Heslop RB, Kirby R (1964) Conditions for quantitative precipitation of phosphate as ammonium 12-molybdophosphate. Anal Chim Acta 30(5):450–459. doi:10.1016/S0003-2670(00)88748-6

    Article  CAS  Google Scholar 

  11. Demaster DJ (1980) The half-life of 32Si determined from a varved gulf of california sediment core. Earth Planet Sci Lett 48(1):209–217. doi:10.1016/0012-821x(80)90182-X

    Article  CAS  Google Scholar 

  12. Gellermann R, Borner I, Franke T, Frohlich K (1988) Preparation of water samples for 32Si determinations. Isotopenpraxis 24(3):114–117. doi:10.1080/10256018808623917

    CAS  Google Scholar 

  13. Waser NAD, Bacon MP (1994) Cosmic-ray produced 32P and 33P in Cl, S and K at mountain altitude and calculation of oceanic production-rates. Geophys Res Lett 21(11):991–994. doi:10.1029/94gl00878

    Article  CAS  Google Scholar 

  14. Benitez-Nelson CR, Buesseler KO (1998) Measurement of cosmogenic 32P and 33P activities in rainwater and seawater. Anal Chem 70(1):64–72. doi:10.1021/Ac9707500

    Article  CAS  Google Scholar 

  15. Conley DJ (1998) An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar Chem 63(1–2):39–48. doi:10.1016/S0304-4203(98)00049-8

    Article  CAS  Google Scholar 

  16. Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Battarbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31(3):391–401. doi:10.1023/B:Jopl.0000021854.70714.6b

    Article  Google Scholar 

  17. Lundell GEF, Hoffman JI (1923) Notes on the determination of phosphorus. Ind Eng Chem 15:44–47. doi:10.1021/Ie50157a029

    Article  CAS  Google Scholar 

  18. Aalseth CE, Bonicalzi RM, Cantaloub MG, Day AR, Erikson LE, Fast J, Forrester JB, Fuller ES, Glasgow BD, Greenwood LR, Hoppe EW, Hossbach TW, Hyronimus BJ, Keillor ME, Mace EK, McIntyre JI, Merriman JH, Myers AW, Overman CT, Overman NR, Panisko ME, Seifert A, Warren GA, Runkle RC (2012) A shallow underground laboratory for low-background radiation measurements and materials development. Rev Sci Instrum 83(11):113503. doi:10.1063/1.4761923

    Article  CAS  Google Scholar 

  19. Rings A, Lucke A, Schleser GH (2004) A new method for the quantitative separation of diatom frustules from lake sediments. Limnol Oceanogr Methods 2:25–34

    Article  Google Scholar 

  20. Waser NA, Fleer AP, Hammar TR, Buesseler KO, Bacon MP (1994) Determination of natural 32P and 33P in rainwater, marine particles and plankton by low-level beta counting. Nucl Instrum Meth Phys 338(2–3):560–567

    Article  CAS  Google Scholar 

  21. Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Finch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finch, Z.S., Seiner, B.N., Arrigo, L.M. et al. Toward sufficient reduction of radio-impurities for 32Si sediment age dating. J Radioanal Nucl Chem 307, 2451–2458 (2016). https://doi.org/10.1007/s10967-015-4651-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4651-y

Keywords

Navigation