Skip to main content
Log in

Liquid scintillation counting of environmental radionuclides: a review of the impact of background reduction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Liquid scintillation counting (LSC) supports a range of environmental science measurements. At Pacific Northwest National Laboratory, we are constructing an LSC system with an expected background reduction of 10–100 relative to values reported in the literature. In this paper, a number of current measurement applications of LSC have been considered with an emphasis on determining which aspects of such measurements would gain the greatest benefit: improved minimum detectable activity (MDA), reduction in sample size, and reduction in total analysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L’Annuziata M (2012) Handbook of radioactivity analysis, 3rd edn. Academic Press, Chapters 7–9, San Diego

    Google Scholar 

  2. Plastino W, Chereji I, Cuna S, Kaihola L, De Felice P, Lupsa N, Balas G, Mirel V, Berdea P, Baciu C (2007) Tritium in water electrolytic enrichment and liquid scintillation counting. Radiat Meas 42:68–73

    Article  CAS  Google Scholar 

  3. Vaupotič J, Ogrinc N, Brenčič M, Kobal I (2011) Tritium mapping in spring waters in Slovenia. Geochem J 45:505–512

    Article  Google Scholar 

  4. Aalseth CE, Bonicalzi RM, Cantaloub MG, Day AR, Erikson LE, Fast JE, Forrester JB, Fuller ES, Glasgow BD, Greenwood LR, Hoppe EW, Hossbach TW, Hyronimus BJ, Keillor ME, Mace EK, McIntyre JI, Merriman JH, Myers AW, Overman CT, Overman NR, Panisko ME, Seifert A, Warren GA, Runkle RC (2012) A shallow underground laboratory for low-background radiation measurements and materials development. Rev Sci Instrum 83(11):113503

    Article  CAS  Google Scholar 

  5. Runkle RC, Aalseth CE, Bailey VL, Bonicalzi R, Moran JJ, Seifert A, Warren GA (2012) Opportunities for decay counting of environmental radioisotopes using ultra-low-background detection systems. PNNL-21709. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  6. Keillor ME, Aalseth CE, Day AR, Erikson LE, Fast JE, Glasgow BD, Hoppe EW, Hossbach TW, Hyronimus BJ, Miley HS, Myers AW, Seifert A, Stavenger TJ (2011) CASCADES: an ultra-low-background germanium crystal array at Pacific Northwest national laboratory. AIP Conf Proc 1412:208–215

    Article  CAS  Google Scholar 

  7. Aalseth CE, Day AR, Hoppe EW, Hossbach TW, Hyronimus BJ, Keillor ME, Litke KE, Mintzer EE, Seifert A, Warren GA (2009) Design and construction of a low-background, internal-source proportional counter. J Radioanal Nucl Ch 282(1):233–237

    Article  CAS  Google Scholar 

  8. Erchinger JL, Aalseth CE, Beacham TA, Bernacki BE, Douglas M, Fuller ES, Keillor ME, Morley SM, Mullen CA, Orrell JL, Panisko ME, Shaff SM, Warren GA, Williams RO, Wright ME (2015) Development of a low background liquid scintillation counter for a shallow underground laboratory. Appl Radiat Isot. doi:10.1016/j.apradiso.2015.08.027

    Google Scholar 

  9. Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

  10. Kern Z, Molnár M, Svingor E, Persoiu A, Nagy B (2009) High resolution, well-preserved tritium record in the ice of Bortig Ice Cave, Bihor Mountains, Romania. Holocene 19:729–736

    Article  Google Scholar 

  11. Janovics R, Bihari Á, Papp L, Dezső Z, Major Z, Sárkány KE, Bujtás T, Veres M, Palcsu L (2014) Monitoring of tritium, 60Co and 137Cs in the vicinity of the warm water outlet of The Paks Nuclear Power Plant, Hungary. J Environ Radioactiv 128:20–26

    Article  CAS  Google Scholar 

  12. Nikolov J, Todorovic N, Jankovic M, Vostinar M, Bikit I, Veskovic M (2013) Different methods for tritium determination in surface water by LSC. Appl Radiat Isot 71:51–56

    Article  CAS  Google Scholar 

  13. Koarashi JM, Nakada S (2008) A Monitoring methodologies and chronology of radioactive airborne releases from Tokai reprocessing plant. J Nucl Sci Technol 5:462–465

    Article  Google Scholar 

  14. Matsuura K, Sasa Y, Nakamura C, Katagiri H (1995) Levels of tritium concentration in the environmental samples around JAERI Tokai. J Radioanal Nucl Ch 197(2):295–307

    Article  CAS  Google Scholar 

  15. Morgenstern U, Taylor CB (2009) Ultra low-level tritium measurement using electrolytic enrichment and LSC. Isot Environ Healt S 45(2):96–117

    Article  CAS  Google Scholar 

  16. Rank D (1993) Environmental tritium in hydrology: present state 1992. In: Noakes JE, Schonhofer F, Polach HA (eds) Advances in liquid scintillation spectrometry. Radiocarbon Publishers, University of Arizona, Tucson, pp 327–334

    Google Scholar 

  17. Kim SB, Stuart M (2013) An alternative method of OBT measurement for the limited quantity of environmental samples using a combustion bomb. Appl Radiat Isot 82:175–180

    Article  CAS  Google Scholar 

  18. Pointurier F, Baglan N, Alanic G, Chappini R (2004) A method for the determination of low-level organic-bound tritium activities in environmental samples. Appl Radiat Isot 61:293–298

    Article  CAS  Google Scholar 

  19. Hardy EP Jr (1977) Final tabulation of monthly 90Sr Fallout data: 1954–1976, health and safety laboratory report. HASL-329, U.S. Energy Research and Development Administration, New York

    Google Scholar 

  20. Lopes I, Madruga MJ (2008) Application of liquid scintillation counting technique to the determination of 90Sr in milk samples. In: J Eikenberg, M Jäggi, H Beer, H Baehrle (eds) Advances in liquid scintillation spectrometry. © 2009 by the Arizona Board of Regents on behalf of the University of Arizona; LSC 2008, pp. 331–337

  21. Oikawa STH, Watabe T, Misonoo J, Kusakabe M (2013) Distribution of the Fukushima-derived radionuclides in seawater in the Pacific off the coast of Miyagi, Fukushima, and Ibaraki Prefectures, Japan. Biogeosciences 10:5031–5047

    Article  Google Scholar 

  22. Lee MHCK, Choi GK, Lee CW (2002) Measurement of 90Sr in aqueous samples using liquid scintillation counting with full spectrum DPM method. Appl Radiat Isot 57:257–263

    Article  CAS  Google Scholar 

  23. Wang JJ (2013) A quick liquid scintillation counting technique for analysis of 90Sr in environmental samples. Appl Radiat Isot 81:169–174

    Article  CAS  Google Scholar 

  24. Takagai YFM, Kameo Y, Suzuki K (2014) Sequential inductively coupled plasma quadrupole mass-spectrometric quantification of radioactive strontium-90 incorporating cascade separation steps for radioactive contamination rapid survey. Anal Methods 6:355–362

    Article  CAS  Google Scholar 

  25. Vogl K, Gesewsky P (1992) A rapid method for the determining 89Sr and 90Sr from nuclear accidents. In liquid scintillation spectrometry, p 435–438

  26. Kim CK, Al-Hamwi A, Törvényi A, Kis-Benedek G, Sansone U (2009) Validation of rapid methods for the determination of radiostrontium in milk. Appl Radiat Isot 67:786–793

    Article  CAS  Google Scholar 

  27. Torres JMLM, Rauret G, Bickel M, Altzitzoglou T, Pilviö R (2000) Determination of 90Sr in aquatic organisms by extraction chromatography: method validation. Anal Chim Acta 414:101–111

    Article  CAS  Google Scholar 

  28. Maxwell SL, Culligan BK (2009) Rapid method for determination of radiostrontium in emergency milk samples. J Radioanal Nucl Chem 279(3):757–760

    Article  CAS  Google Scholar 

  29. Heilgeist M (2000) Use of extraction chromatography, ion chromatography and liquid scintillation spectrometry for rapid determination of strontium-89 and strontium-90 in food in cases of increased release of radionuclides. J Radioanal Nucl Chem 245(2):249–254

    Article  CAS  Google Scholar 

  30. Gale SJ (2009) Dating the recent past. Quat Geochronol 4:374–377

    Article  Google Scholar 

  31. Geibert W, Van der Loeff MMR, Hanfland C (2002) Dauelsberg H-J Actinium-227 as a deep-sea tracer: sources, distributions, and applications. Earth Planet Sci Lett 198:147–165

    Article  CAS  Google Scholar 

  32. Nozaki Y (1984) Excess 227Ac in deep ocean water. Nature 310:486–488

    Article  CAS  Google Scholar 

  33. Cabell MJ (1959) The purification, determination, and neutron capture cross-section of Actinium-227. Can J Chem 37:1094–1103

    Article  CAS  Google Scholar 

  34. Percival DR, Martin DB (1974) Sequential determination of Radium-226, Radium-228, Actinium-227, and Thorium isotopes in environmental and process waste samples. Anal Chem 46(12):1742–1749

    Article  CAS  Google Scholar 

  35. Geibert W, Vöge I (2008) Progress in determination of 227Ac in sea water. Mar Chem 109:238–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support for this work from the Ultra-Sensitive Nuclear Measurements Initiative, a Laboratory Directed Research and Development Initiative at Pacific Northwest National Laboratory. We thank Deb Barnett for assistance with editing and finalizing this manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Douglas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douglas, M., Bernacki, B.E., Erchinger, J.L. et al. Liquid scintillation counting of environmental radionuclides: a review of the impact of background reduction. J Radioanal Nucl Chem 307, 2495–2504 (2016). https://doi.org/10.1007/s10967-015-4512-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4512-8

Keywords

Navigation