Skip to main content
Log in

Goldanskii–Karyagin effect on hyperalkaline tin(II)-hydroxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Frozen aqueous solution of hyperalkaline tin(II)-hydroxide was analysed by 119Sn Mössbauer spectroscopy at low temperature in order to determinate the structure of the hydroxo complex formed under hyperalkaline (pH > 13) conditions. Interestingly, the quadrupole doublet characteristic of this complex in the 119Sn Mössbauer spectrum exhibited asymmetry in the line intensities. Analysis of the temperature dependence of the Mössbauer spectra demonstrated that this phenomenon can be rationalised by the Goldanskii–Karyagin effect. The effect emerges due to the vibrational anisotropy of bonds in the tin complex formed in hyperalkaline solution, similarly to what has been found earlier for SnF2 with analogous Sn bond structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pallagi A, Bajnóczi ÉG, Canton SE, Bolin T, Peintler G, Kutus B, Kele Z, Pálinkó I, Sipos P (2014) Env Sci Technol 48:6604–6611

    Article  CAS  Google Scholar 

  2. Pallagi A, Tasi ÁG, Peintler G, Forgo P, Pálinkó I, Sipos P (2013) Dalton Trans 42:13470–13476

    Article  CAS  Google Scholar 

  3. Bajnóczi É, Czeglédi E, Kuzmann E, Homonnay Z, Bálint SZ, Dombi GY, Forgo P, Berkesi O, Pálinkó I, Peintler G, Sipos P, Persson I (2014) Dalton Trans 43:17971–17979

    Article  Google Scholar 

  4. Bajnóczi ÉG, Bohner B, Czeglédi E, Kuzmann E, Homonnay Z, Lengyel A, Pálinkó I, Sipos P (2014) J Radioanal Nucl Chem 302:695–700

    Article  Google Scholar 

  5. Kuzmann E, Homonnay Z, Nagy S, Nomura K (2010) Mössbauer spectroscopy. In: Vértes A, Nagy S, Klencsár Z (eds) Handbook of nuclear chemistry. Springer, New York 3–65

  6. Donaldson JD, Jelen A (1968) J Chem Soc A 4:1448–1450

    Article  Google Scholar 

  7. Kuzmann E, Lengyel A, Homonnay Z, Várhelyi CS Jr, Klencsár Z, Kubuki S, Szalay R (2014) Hyperfine Interact 226:181–185

    Article  CAS  Google Scholar 

  8. Goldanskii VI, Makarov EF (1968) Chemical applications of Mössbauer spectroscopy. Academic Press, New York, p 102

    Google Scholar 

  9. Karyagin SV (1963) Dokl Akad Nauk SSSR 148:1102–1105

    CAS  Google Scholar 

  10. V. I. Goldanskii, E.F. Makarov, V.V. Khrapov, 1963: Theor. Fizz. 44 752.; Phys. Lett. 3 344-346

  11. Shenoy GK, Friedt JM (1976) Nucl Instrum Methods 136:569–574

    Article  CAS  Google Scholar 

  12. Herber RH, Chandra S, Hazony Y (1970) J Chem Phys 53:3330–3335

    Article  CAS  Google Scholar 

  13. Herber RH, Chandra S (1971) J Chem Phys 54:1847–1851

    Article  CAS  Google Scholar 

  14. Birchall T, Dénès G, Ruebenbauer K, Pannetier J (1986) Hyperfine Interact 29:1327–1330

    Article  CAS  Google Scholar 

  15. Sipos P, Hefter GT, May PM (2000) J Chem Eng Data 45(4):613–617

    Article  CAS  Google Scholar 

  16. Sipos P, May PM, Hefter GT (2000) Analyst 125(5):955–958

    Article  CAS  Google Scholar 

  17. Tobias RS (1958) Studies on the hydrolysis of metal ions. Acta Chem Scand 12(2):198–223

    Article  CAS  Google Scholar 

  18. Klencsár Z, Kuzmann E, Vértes A (1996) J Radioanal Nucl Chem 210:105–118

    Article  Google Scholar 

  19. Rein AJ, De Vries JLKF, Herber RH (1974) J lnorg Nucl Chem 36:825–831

    Article  CAS  Google Scholar 

  20. Herber RH, Stöckler HA, Reichle WT (1965) J Chem Phys 42:2447–2452

    Article  CAS  Google Scholar 

  21. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd, London, pp 386–392

    Book  Google Scholar 

  22. Zuckerman JJ (1967) J lnorg Nucl Chem 29:2191–2202

    Article  CAS  Google Scholar 

  23. King B, Eckert H, Denney DZ, Herber RH (1986) Inorg Chim Acta 122:45–53

    Article  CAS  Google Scholar 

  24. Davies CG, Donaldson JD (1968) J Chem Soc A 4:946–948

    Article  Google Scholar 

  25. Birchall T, Dénès G, Ruebenbauer K, Pannetier J (1986) Hyperfine Interact 30:167–183

    Article  CAS  Google Scholar 

  26. Watson GB (2001) J Chem Phys 114(2):758–763

    Article  CAS  Google Scholar 

  27. Langmuir I (1919) J Am Chem Soc 41:1543–1559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research leading to this contribution was supported by the National Research Fund of Hungary through OTKA 106234 and TÁMOP-4.2.2.C-11/1KONV-2012-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernő Kuzmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lengyel, A., Klencsár, Z., Homonnay, Z. et al. Goldanskii–Karyagin effect on hyperalkaline tin(II)-hydroxide. J Radioanal Nucl Chem 307, 1195–1201 (2016). https://doi.org/10.1007/s10967-015-4410-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4410-0

Keywords

Navigation