Skip to main content
Log in

Reference material for natural radionuclides in glass designed for underground experiments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A reference material designed for the determination of natural radionuclides in solid samples (glass pellets) is described and the results of certification are presented. The material has been certified for 7 natural radionuclides (40K, 226Ra, 228Ra, 228Th, 232Th, 235U and 238U). An information value is given for 210Pb. Radon (222Rn) emanation experiments showed results comparable within participating laboratories, however, the number of data and precision was too low to carry out a certification process. The reference material may be used for quality management of analytical laboratories engaged in the high-sensitive analysis of radionuclides in the construction materials of detectors placed in ultra low background underground laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Povinec PP, Pham MK (2001) IAEA reference materials for quality assurance of marine radioactivity measurements. J Radioanal Nucl Chem 248:211–216

    Article  CAS  Google Scholar 

  2. Povinec PP, Comanducci JF, Levy-Palomo I (2004) IAEA-MEL’s underground counting laboratory in Monaco—background characteristics of HPGe detectors with anti-cosmic shielding. Appl Radiat Isot 61:85–93

    Article  CAS  Google Scholar 

  3. Pham MK, Betti M, Povinec PP, Benmansour M, Bojanowski R, Bouisset P, Calvo EC, Ham GJ, Holm E, Ilchmann C, Kloster M, Kanish G, Koehler M, La Rosa J, Legarda F, Llauradó M, Nour-redine A, Oh J-S, Pellicciari M, Rieth U, Rodriguez y Baena AM, Sanchez-Cabeza JA, Satake H, Schilkowski J, Takeishi M, Thébault H, Varga Z (2010) A new reference material for radionuclides in the mussel sample from the Mediterranean Sea (IAEA-437). J Radioanal Nucl Chem 283:851–859

    Article  CAS  Google Scholar 

  4. Povinec PP, Pham MK, Sanchez-Cabeza JA, Barci-Funel G, Bojanowski R, Boshkova T, Burnett WC, Carvalho F, Chapeyron B, Cunha IL, Dahlgaard H, Galabov N, Fifield LK, Gastaud J, Geering JJ, Gomez IF, Green N, Hamilton T, Ibanez FL, Ibn Majah M, John M, Kanish G, Kenna TC, Kloster M, Korun M, Liong Wee Kwong L, La Rosa J, Lee S-H, Levy-Palomo I, Malatova M, Maruo Y, Mitchell P, Murciano IV, Nelson R, Nourredine A, Oh J-S, Oregioni B, Le Petit G, Pettersson HBL, Reineking A, Smedley PA, Suckow A, van der Struijs TDB, Voors PI, Yoshimizu K, Wyse E (2007) Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment). J Radioanal Nucl Chem 273:383–393

    Article  CAS  Google Scholar 

  5. Agyriades J et al (2010) Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils. Nucl Instrum Methods Phys Res A622:120–128

    Article  CAS  Google Scholar 

  6. Arnold R, Augier C, Bakalyarov AM, Baker J, Barabash A, Bernaudin Ph, Bouchel M, Brudanin V, Caffrey AJ, Cailleret J, Campagne JE, Dassié D, Egorov V, Errahmane K, Etienvre AI, Filipova T, Forget J, Guiral A, Guiral P, Guyonnet JL, Hubert F, Hubert Ph, Humbert B, Igersheim R, Imbert P, Jollet C, Jullian S, Kisel I, Klimenko A, Kochetov O, Kovalenko V, Lalanne D, Laplanche F, Lavigne B, Lebedev VI, Lebris J, Leccia F, Leconte A, Linck I, Longuemare C, Marquet Ch, Martin-Chassard G, Mauger F, Nemchenok I, Nikolic-Audit I, Ohsumi H, Pécourt S, Piquemal F, Reyss JL, Richard A (2005) Technical design and performance of the NEMO 3 detector. Nucl Instrum Methods Phys Res. A 536:79–122

    Article  CAS  Google Scholar 

  7. Arnold R et al (2010) Probing new physics models of neutrinoless double beta decay with SuperNEMO. Eur Phys J C 70:927–943

    Article  CAS  Google Scholar 

  8. Ackermann KH et al (2013) The GERDA experiment for the search of 0νββ decay in 76Ge. Eur Phys J C. doi:10.1140/epjc/s10052-013-2330-0

    Google Scholar 

  9. G Alimonti et al (2009) The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl Instrum Methods Phys Res. A 600:568–593

    Article  CAS  Google Scholar 

  10. Abe K et al (2014) Calibration of the Super-Kamiokande detector. Nucl Instrum Methods Phys Res. A 737:253–272

    Article  CAS  Google Scholar 

  11. Fiorucci S et al (2007) Idenfificafion of backgrounds in the EDELWEISS-I dark matter search experiment. Astropart Phys 28:143–153

    Article  Google Scholar 

  12. Aprile E et al (2010) First dark matter results from the XENON100 experiment. Phys Rev Lett 105:131302

    Article  CAS  Google Scholar 

  13. Angloher G et al (2014) EURECA Conceptual Design Report. Phys Dark Univ 3:41–74

    Article  CAS  Google Scholar 

  14. Povinec PP, Sýkora I, Holý K, Gera M, Kováčik A, Bresťáková L (2012) Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident – A comparison with global fallout and the Chernobyl accident. J Environ Radioact 114:81–88

    Article  CAS  Google Scholar 

  15. Budjáš D, Gangapshev AM, Gasparro J, Hampel W, Heisel M, Heusser G, Hult M, Klimenko AA, Kuzminov VV, Laubenstein M, Maneschg W, Simgen H, Smolnikov AA, Tomei C, Vasiliev SI (2009) Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment. Appl Radiat Isotopes 67:755–758

    Article  CAS  Google Scholar 

  16. Povinec PP, Badie C, Baeza A, Barci-Funel G, Bergan TD, Bojanowski R, Burnette W, Eikenberg J, Fifield LK, Serradell V, Gastaud J, Goroncy I, Herrmann J, Hotchkis MAC, Ikaheimonen TK, Jakobson E, Kalimbadjan J, La Rosa JJ, Lee SH, Liong Wee Kwong L, Lueng WM, Nielsen SP, Noureddine A, Pham MK, Rohou JN, Sanchez-Cabeza JA, Suomela J, Suplinska M, Wyse E (2002) Certified reference material for radionuclides in seawater IAEA-381 (Irish sea water). J Radioanal Nucl Chem 251:369–374

    Article  CAS  Google Scholar 

  17. Thompson M, Ellison SLR, Wood R (2006) The international harmonized protocol for the proficiency testing of analytical chemistry laboratories. Pure Appl Chem 78:145–196

    Article  CAS  Google Scholar 

  18. International Standard Organization (ISO) (1997) Quality System Guidelines for the Production of Reference Materials, Guide 34. ISO/IEC, Geneva

    Google Scholar 

  19. Cofino WP, Wells DE (1994) Design and evaluation of the QUASIMEME inter- laboratory performance studies: a test case for robust statistics. Mar Pollut Bull 29:149–158

    Article  CAS  Google Scholar 

  20. International Standard Organization (ISO) (2006) Certification of Reference Materials — General and Statistical Principles, Guide 35. ISO, Geneva

    Google Scholar 

  21. Brennecka GA, Borg LE, Hutcheon ID, Sharp MA, Anbar AD (2010) Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238 U/235 U fractionation mechanism. Earth Planet Sci Lett. 291:228–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to their numerous colleagues who took part in the analytical works. The Bratislava group acknowledges a partial support provided by the VEGA Grant # 1/0783/14 from The Ministry of Education, Science, Research and Sport of the Slovak Republic, and by the EU Research and Development Operational Program funded by the ERDF (Projects # 26240120012, 26240120026 and 26240220004). The IAEA is grateful for the support provided to its Environment Laboratories by the Government of the Principality of Monaco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Povinec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povinec, P.P., Pham, M.K., Busto, J. et al. Reference material for natural radionuclides in glass designed for underground experiments. J Radioanal Nucl Chem 307, 619–626 (2016). https://doi.org/10.1007/s10967-015-4202-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4202-6

Keywords

Navigation