Skip to main content
Log in

Low gamma irradiation effects on protein profile, solubility, oxidation, scavenger ability and bioavailability of essential minerals in black and yellow Indian soybean (Glycine max L.) varieties

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Effect of low doses of gamma irradiation (0.25, 0.5 and 1.0 kGy) on protein oxidation, profile, solubility, ROS scavenging and in vivo bioavailability of minerals in black (BS1) and yellow (BRAGG) soybean varieties were investigated. Increased oxidation, altered protein profile with decreased solubility was observed higher in BRAGG compared with BS1. The most significant ROS scavenging effect, antioxidant activity, least phytate content and improved bioavailability was found at 0.5 kGy in BS1 than BRAGG due to anthocyanins, and phenolics. Still 1.0 kGy is considered as toxicologically and microbiologically safe but it causes biochemical alterations and thus 0.5 kGy can be the optimum dose with enriched nutraceutical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FDA:

Food and drug administration

PUFA:

Poly unsaturated fatty acids

CVD:

Cardio vascular diseases

BCA:

Bicinchoninic acid assay

DNPH:

Dinitro phenyl hydrazine

TPTZ:

2,4,6-Tripyridyl-S-triazine

FRAP:

Ferric ion reducing power

PEB:

Protein extraction buffer

DPPH:

1,1-Diphenyl-2-pycril-hydrazil

SDS-PAGE:

Sodium dodecyl sulphate-poly acrylamide gel electrophoresis

DNP:

Dinitro phenyl hydrazine

Tris:

Tris(hydroxymethyl)aminomethane

RSC:

Radical scavenging capacity

RT:

Room temperature

References

  1. Espinosa AC, Jesudhasan P, Arrendondo R, Cepeda M, Mazari-Hiriart M, Mena KD, Pillai SD (2012) Quantifying the reduction in potential health risk by determining the sensitivity of poliovirus type 1 chat strain and rota virus SA-11 to electron beam irradiation of ice berg lettuce and spinach. Appl Environ Microbiol 78(4):988–993

    Article  CAS  Google Scholar 

  2. Dubravka S, Milosevic M, Popovic BM (2007) Irradiation effects on 4 phenolic content, lipid and protein oxidation and scavenger ability of 5 soybean seeds. Int J Mol Sci 8:618–627

    Article  Google Scholar 

  3. Afify AMR, Rashed MM, Mahmoud EA, El-Belgati HS (2011) Effect of gamma radiation on protein profile, protein fraction and solubility’s of three oil seeds: soybean, peanut and sesame. Not Bot Hort Agrobo 39(2):90–98

    CAS  Google Scholar 

  4. Aldercreutz H, Mazur W (1997) Phytoestrogens and western diseases. Ann Med 29:95–120

    Article  Google Scholar 

  5. Cheftel JC, Cuq JL, Lorient D (1985) In: Fennema OR (ed) Amino acids, peptides, proteins. Marcel Dekker, New York

    Google Scholar 

  6. Dogbevi MK, Vachon C, Lacroix M (2000) Physico-chemical properties of dry red kidney bean proteins and natural micro-flora as affected by gamma irradiation. J Food Sci 64:540–542

    Article  Google Scholar 

  7. Al-bashir M (2004) Effect of gamma irradiation on fungal load, chemical and sensory characteristics of walnuts (Juglans regia L.). J Stored Prod Res 40:355–362

    Article  CAS  Google Scholar 

  8. Sung WC (2005) Effect of gamma irradiation on rice and its food products. Radiat Phys Chem 73:224–228

    Article  CAS  Google Scholar 

  9. Shelf life and quality control studies on strawberry and mushrooms, JNTU, http://grietinfo.in/projects/MAIN/BT2012/SHELF%20LIFE%20AND%20QUALITY%20CONTROL%20STUDIES%20ON%20STRAWBERRY%20AND%20MUSHROOMS.pdf. Accessed 20 April 2014

  10. Dixit AK, Bhatnagar D, Kumar V, Rani A, Manjaya JG, Bhatnagar D (2010) Gamma irradiation induced enhancement in isoflavones, total phenol, anthocyanin and antioxidant properties of varying seed coat colored soybean. J Agric Food Chem 58(7):4298–4302

    Article  CAS  Google Scholar 

  11. Iwabuchi S, Yamauchi F (1987) Electrophoretic analysis of whey proteins presents in soybean globulin fractions. J Agric Food Chem 28:77–87

    Google Scholar 

  12. John MW (1996) The bicinchoninic acid assay for protein quantification. http://www.springerprotocols.com/Abstract/doi/10.1385/0-89603-268-X:5. Accessed 20 April 2014

  13. Laemmli UK, Eiserling FA (1968) Studies on the morphopoiesis of the head of phage T-even. Mol Gen Genet 101:333–345

    Article  CAS  Google Scholar 

  14. Dubravka S, Popovic MB, Taski K (2009) Effect of gamma-irradiation on antioxidant activity in soybean seeds. Cent Euro J Biol 4:381–386

    Google Scholar 

  15. Isabella DD, Rossib R, Daniela G, Aldo M, Roberto C (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  CAS  Google Scholar 

  16. Benzie IFF, Strain JJ (1999) Ferric reducing antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  Google Scholar 

  17. Abe N, Murata T, Hirota A (1998) Novel 1,1-diphenyl-2-pycril-hydrazil radical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. Biosci Biotechnol Biochem 62:661–662

    Article  CAS  Google Scholar 

  18. Kumari S, Krishnan V, Monica J, Archana S (2014) In vivo bioavailability of essential minerals and phytase activity during soaking and germination in soybean (Glycine max L.). Aust. J Crop Sci 8(8):1168–1174

    CAS  Google Scholar 

  19. Cho Y, Song KB (2000) Effect of gamma irradiation on the molecular properties of BSA and beta-lactoglobulin. J Biochem Mol Biol 33:133–137

    CAS  Google Scholar 

  20. Afify AMR, Rashed MM, Ebtesam AM, El-Belgati HS (2013) Effect of gamma radiation on the lipid profiles of soybean, peanut and sesame seed oils. Grasas Aceites 64:356–368

    Article  CAS  Google Scholar 

  21. Mehlo L, Mbamboa Z, Badob S, Linc J, Moagia SM, Buthelezia S, Stoycheva S, Chikwambaa R (2013) Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum. Mutat Res-Fund Mol M. 1(2):66–72

    Article  CAS  Google Scholar 

  22. Byun M, Kang I, Mori T (1996) Effect of γ-irradiation on the water soluble components of soybeans. Radiat Phys Chem 47:155–160

    Article  CAS  Google Scholar 

  23. Zhao H, Wang Z, Ma F, Yang X, Cheng C, Yao L (2012) Protective Effect of Anthocyanin from Lonicera Caerulea var. Edulis on Radiation-Induced Damage in Mice. Int J Mol Sci 13:11773–11782

    Article  CAS  Google Scholar 

  24. Pandey KB, Syed IR (2009) Plant polyphenols as dietary antioxidants in human health and diseases. Oxid Med Cell Longev. 2(5):270–278

    Article  Google Scholar 

  25. Ahuja S, Kumar M, Kumar P, Gupta VK, Singhal RK, Yadav A, Singh B (2014) Metabolic and biochemical changes caused by gamma irradiation in plants. J Radio anal Nucl Chem. 300:199–212

    Article  CAS  Google Scholar 

  26. Mohajer S, Taha RM, Lay MM, Esmaeili AK, Khalili M (2014) Stimulatory Effects of Gamma Irradiation on Phytochemical Properties, Mitotic Behaviour, and Nutritional Composition of Sainfoin (Onobrychis viciifolia Scop.) Scientific world Journal DOI 10.1155/2014/854093854093

  27. Variyar PS, Limaye A, Sharma A (2004) Radiation-Induced Enhancement of Antioxidant Contents of Soybean (Glycine max Merrill). J Agric Food Chem 52:3385–3388

    Article  CAS  Google Scholar 

  28. El-Niely HFG (2007) Effect of radiation processing on antinutrients, in vitro protein digestibility and protein efficiency ratio bioassay of legume seeds. Radiat Phys Chem 76:1050–1057

    Article  CAS  Google Scholar 

  29. Hassan A, Osman G, Rushdi M (2009) Effect of gamma radiation on nutritional quality of Maize cultivars (Zea mays) and Sorghum (Sorghum bicolor) grains. Pak J Nutr. 8(2):167–171

    Article  CAS  Google Scholar 

  30. Sweta K, Veda K, Monica J, Sachdev A (2015) Reduction in phytate levels and HCl extractability of divalent cations in soybean (Glycine max L.) during soaking and germination. Ind. J Plant Physiol 20(1):44–49

    Google Scholar 

  31. Sweta K, Veda K, Sachdev A (2014) Impact of soaking and germination durations on antioxidants and antinutrients of black and yellow soybean (Glycine max L.) varieties J Plant. Biochem. doi:10.1007/s13562-014-0282-6

    Google Scholar 

  32. Sweta K, Veda K, Monica J, Sachdev A (2014) In vivo bioavailability of essential minerals and phytase activity during soaking and germination in soybean (Glycine max.L). Aust. J Crop Sci. 8(8):1168–1174

    Google Scholar 

  33. Kumar M, Ahuja S, Dahuja A, Kumar R, Singh B (2014) Gamma radiation protects fruit quality in tomato by inhibiting the production of reactive oxygen species (ROS) and ethylene. J Radio Anal Nucl Chem doi:10.1007/s10967-014-3234-7J335/7.6

  34. Agte VV, Tarwadi KV, Chiplonkar SA (1999) In: Roussel AM, Anderson RA, Favier AE (eds) The influence of various food ingredients and their combinations on in vitro availability of Fe2+ and Zn2+ in cereal – based vegetarian meals. Plenum Publishers, New York

    Google Scholar 

  35. Chamani M, Rousta M, Sadeghi A, Shawrang P, Aminafshar M (2014) Changes in anti-nutritional contents and digestibility of gamma irradiated sorghum grain. Int J Biol Pharm Allied Sci. 3(9):2176–2187

    CAS  Google Scholar 

  36. Sattar A, Neelofar X, Akhtar MA (1990) Effect of radiation and soaking on phytate content of soybean. Acta Aliment Hung. 19:331–336

    CAS  Google Scholar 

  37. Singh PK, Sohani S, Panwar N, Bhagyawant SS (2014) Effect of radiation processing on nutritional quality of some legume seeds. Int J Biol Pharm Res. 5(11):876–881

    Google Scholar 

Download references

Acknowledgments

We thank Dr. S. K. Lal for providing the samples. This study was supported by grant in aid for scientific research by Indian Agricultural Research Institute, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Sachdev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V., Singh, A., Thimmegowda, V. et al. Low gamma irradiation effects on protein profile, solubility, oxidation, scavenger ability and bioavailability of essential minerals in black and yellow Indian soybean (Glycine max L.) varieties. J Radioanal Nucl Chem 307, 49–57 (2016). https://doi.org/10.1007/s10967-015-4193-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4193-3

Keywords

Navigation