Skip to main content
Log in

Ionic liquid dispersive microextraction and spectrophotometric determination of trace uranyl ion in water samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study, spectrophotometric determination of uranyl with 2-(5-Bromo-2-pyridylazo)-5-(diethylamino) phenol after ionic liquid based microextraction has been developed. Effect of experimental parameters were optimized to achieve high sensitivity and stability of the complex. The analytical parameters such as linear range (1.33–670 µg L−1), limit of detection (0.97 µg L−1) and enrichment factor (150) were calculated for the method. The relative standard deviation of ten replicate measurement of uranyl was 6.53 and 2.59 % for 66 and 133 µg L−1 uranium, respectively. The proposed method was used to determine the uranyl ions in spiked water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hixon AE, DiPrete DP, DeVol TA (2013) J Radioanal Nucl Chem 298:419–427

    Article  CAS  Google Scholar 

  2. Dadfarnia S, Shabani AMH, Shakerian F, Esfahani GS (2013) J Hazard Mater 263:670–676

    Article  CAS  Google Scholar 

  3. Jauberty L, Drogat N, Decossas JL, Delpech V, Gloaguen V, Sol V (2013) Talanta 115:751–754

    Article  CAS  Google Scholar 

  4. Shariati S, Yamini Y, Zanjani MK (2008) J Hazard Mater 165:583–590

    Article  Google Scholar 

  5. Biswas S, Pathak PN, Roy SB (2012) Spectrochim Acta A 91:222–227

    Article  CAS  Google Scholar 

  6. Khan MH, Warwick P, Evans N (2006) Chemosphere 63:1165–1169

    Article  CAS  Google Scholar 

  7. Suresh A, Patre DK, Srinivasan TG, Rao PRV (2002) Spectrochim Acta A 58:341–347

    Article  CAS  Google Scholar 

  8. Al-Kady AS (2012) Sens Actuators B 166–167:485–491

    Article  Google Scholar 

  9. Lutfullah MN, Alam N, Rahman SN, Azmi H (2008) J Hazard Mater 155:261–268

    Article  CAS  Google Scholar 

  10. Orabi AH (2013) J Radiat Res Appl Sci 6:1–10

    Article  CAS  Google Scholar 

  11. Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217:2342–2357

    Article  CAS  Google Scholar 

  12. Ribeiro C, Ribeiro AR, Maia AS, Gonçalves VMF, Tiritan ME (2014) Crit Rev Anal Chem 44:142–185

    Article  CAS  Google Scholar 

  13. Martinis EM, Berton P, Wuilloud RG (2014) Trends Anal Chem 60:54–70

    Article  CAS  Google Scholar 

  14. Kaykhaii M, Ghsemi E (2013) Anal Methods 5(19):5260–5266

    Article  CAS  Google Scholar 

  15. Li Y, Hu B (2010) J Hazard Mater 174:534–540

    Article  CAS  Google Scholar 

  16. Park C, Huang H-Z, Cha K-W (2009) Bull Korean Chem Soc 22:84–86

    Google Scholar 

  17. Han D, Row KH (2010) Molecules 15:2405–2426

    Article  CAS  Google Scholar 

  18. Naeemullah, Tuzen M, Kazi TG, Citak D, Soylak M (2013) J Anal At Spectrom 28:1441–1445

  19. Labrecque C, Potvin S, Whitty-Leveille L, Lariviere D (2013) Talanta 107:284–291

    Article  CAS  Google Scholar 

  20. Shemirani F, Kozani RR, Jamali MR, Assadi Y, Milani SMR (2005) Sep Sci Technol 40:2527–2537

    Article  CAS  Google Scholar 

  21. Madrakian T, Afkhami A, Mousavi A (2007) Talanta 71:610–614

    Article  CAS  Google Scholar 

  22. Favre-Reguillon A, Murat D, Cote G, Foos J, Draye M (2006) J Chem Technol Biotechnol 81:1872–1876

    Article  CAS  Google Scholar 

  23. Bağda E, Yabaş E (2014) J Radioanal Nucl Chem 299:1813–1820

    Article  Google Scholar 

  24. Panja S, Mohapatra PK, Tripathi SC, Gandhi MP, Janardan P (2012) Sep Purif Technol 96:289–295

    Article  CAS  Google Scholar 

  25. Maity S, Sahu SK, Pandit GG (2014) J Radioanal Nucl Chem. doi:10.1007/s10967-014-3410-9

    Google Scholar 

  26. Mohapatra PK, Raut DR, Sengupta A (2014) Sep Purif Technol 133:69–75

    Article  CAS  Google Scholar 

  27. Efstathiou M, Pashalidis I (2014) J Radioanal Nucl Chem. doi:10.1007/s10967-014-3776-8

    Google Scholar 

  28. Niazi A, Khorshidi N, Ghaemmaghami P (2015) Spectrochim Acta A 135:69–75

    Article  CAS  Google Scholar 

  29. Rawat N, Mohapatra PK, Manchanda VK (2006) J Solut Chem 35:803–814

    Article  CAS  Google Scholar 

  30. Das SK, Kedari CS, Tripathi SC (2010) J Radioanal Nucl Chem 285:675–681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are fully grateful for the financial support of the Unit of the Scientific Research Projects of Cumhuriyet University and Gaziosmanpasa University. Dr. Mustafa Tuzen thanks to Turkish Academy of Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Bağda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bağda, E., Tuzen, M. Ionic liquid dispersive microextraction and spectrophotometric determination of trace uranyl ion in water samples. J Radioanal Nucl Chem 306, 385–392 (2015). https://doi.org/10.1007/s10967-015-4126-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4126-1

Keywords

Navigation