Skip to main content
Log in

Source attribution of Pu deposited on natural surface soils

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Plutonium (Pu) concentrations and atom ratios were determined in soil samples collected in Norway in 1990 and 2005. Samples were collected from areas exclusively affected by global fallout, as well as areas affected by both global fallout and fallout from the Chernobyl accident. Pu isotope ratios were largely within the global fallout range (0.182 ± 0.005); however, at some sites the atom ratios indicated influence from the Chernobyl accident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNSCEAR (2000) Annex C, sources and effects of ionizing radiation. UNSCEAR, Vienna

    Google Scholar 

  2. Wendel CC, Fifield LK, Oughton DH, Lind OC, Skipperud L, Bartnicki J, Tims SG, Høibråten S, Salbu B (2013) Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway. Environ Int 59:92–102

    Article  CAS  Google Scholar 

  3. UNSCEAR (2000) Annex J exposures and effects of the Chernobyl accident. UNSCEAR, Vienna

    Google Scholar 

  4. Salbu B (2000) Source-related characteristics of radioactive particles: a review. Radiat Prot Dosim 92(1–3):49–54

    Article  CAS  Google Scholar 

  5. UNSCEAR (2008) Annex J, exposures and effects of the Chernobyl accident. UNSCEAR, Vienna

    Google Scholar 

  6. Paatero J, Hameri K, Jaakkola T, Jantunen M, Koivukoski J, Saxen R (2010) Airborne and deposited radioactivity from the Chernobyl accident—a review of investigations in Finland. Boreal Environ Res 15(1):19–33

    CAS  Google Scholar 

  7. Salminen-Paatero S, Nygren U, Paatero J (2012) 240Pu/239Pu mass ratio in environmental samples in Finland. J Environ Radioact 113:163–170

    Article  CAS  Google Scholar 

  8. Devell L, Tovedal H, Bergstrom U, Appelgren A, Chyssler J, Andersson L (1986) Initial observations of fallout from the reactor accident at Chernobyl. Nature 321(6067):192–193

    Article  CAS  Google Scholar 

  9. Reponen A, Jantunen M, Paatero J, Jaakkola T (1993) Plutonium fallout in southern Finland after the Chernobyl accident. J Environ Radioact 21(2):119–130

    Article  CAS  Google Scholar 

  10. Salbu B (1994) Determination of physicho–chemical forms of radionuclides in natural aquatic systems. In: Holm E (ed) Radioecology. World Scientific, Singapore, p 352

    Google Scholar 

  11. Lindahl P, Roos P, Eriksson M, Holm E (2004) Distribution of Np and Pu in Swedish lichen samples (Cladonia stellaris) contaminated by atmospheric fallout. J Environ Radioact 73(1):73–85

    Article  CAS  Google Scholar 

  12. Pöllänen R, Valkama I, Toivonen H (1997) Transport of radioactive particles from the Chernobyl accident. Atmos Environ 31(21):3575–3590

    Article  Google Scholar 

  13. Backe S, Bjerke H, Rudjord AL, Ugletveit F (1987) Fall-out pattern in Norway after the Chernobyl accident estimated from soil samples. Radiat Prot Dosim 18(2):105–107

    CAS  Google Scholar 

  14. Backe S, Bjerke H, Rudjord A, Ugletveit F (1986) Nedfall av cesium i Norge etter tsjernobylulykken. National institute of Radiation Hygiene, Osterås

    Google Scholar 

  15. Pálsson SE, Howard BJ, Wright SM (2006) Prediction of spatial variation in global fallout of Cs-137 using precipitation. Sci Total Environ 367(2–3):745–756

    Article  Google Scholar 

  16. Palsson SE, Howard BJ, Bergan TD, Paatero J, Isaksson M, Nielsen SP (2013) A simple model to estimate deposition based on a statistical reassessment of global fallout data. J Environ Radioact 121:75–86

    Article  CAS  Google Scholar 

  17. Pálsson SE, Bergan TD, Howard BJ, Ikäheimonen TK, Isaksson M, Nielsen SP, Paatero J (2012) New simple deposition model based on reassessment of global fallout data 1954–1976. Final report from the NKS-B activity DepEstimates, Nordic nuclear safety research: Roskilde

  18. Kelley JM, Bond LA, Beasley TM (1999) Global distribution of Pu isotopes and Np-237. Sci Total Environ 238:483–500

    Article  Google Scholar 

  19. Muramatsu Y, Ruhm W, Yoshida S, Tagami K, Uchida S, Wirth E (2000) Concentrations of Pu-239 and Pu-240 and their isotopic ratios determined by ICP-MS in soils collected from the Chernobyl 30-km zone. Environ Sci Technol 34(14):2913–2917

    Article  CAS  Google Scholar 

  20. Srncik M, Hrnecek E, Steier P, Wallner A, Wallner G, Bossew P (2008) Vertical distribution of Pu-238, Pu-239(40), Am-241, Sr-90 and Cs-137 in Austrian soil profiles. Radiochim Acta 96(9–11):733–738

    CAS  Google Scholar 

  21. Lujaniene G, Aninkevicius V, Lujanas V (2009) Artificial radionuclides in the atmosphere over Lithuania. J Environ Radioact 100(2):108–119

    Article  CAS  Google Scholar 

  22. Oughton DH, Day P, Fifield LK (2001) Plutonium measurement using accelerator mass spectrometry: methodology and applications. In: Kudo A (ed) Plutonium in the environment. Elsevier, Amsterdam, p 47–62

  23. Entwistle JA, Flowers AG, Nageldinger G, Greenwood JC (2003) Identification and characterization of radioactive ‘hot’ particles in Chernobyl fallout-contaminated soils: the application of two novel approaches. Miner Mag 67(2):183–204

    Article  CAS  Google Scholar 

  24. Clacher AP (1995) Development and application of analytical methods for environmental radioactivity. University of Manchester, Manchester

    Google Scholar 

  25. Fifield L (2008) Accelerator mass spectrometry of the actinides. Quat Geochronol 3(3):276–290

    Article  Google Scholar 

  26. Povinec PP, Pham MK, Sanchez-Cabeza JA, Barci-Funel G, Bojanowski R, Boshkova T, Burnett WC, Carvalho F, Chapeyron B, Cunha IL, Dahlgaard H, Galabov N, Fifield LK, Gastaud J, Geering JJ, Gomez IF, Green N, Hamilton T, Ibanez FL, Ibn Majah M, John M, Kanisch G, Kenna TC, Kloster M, Korun M, Kwong LLW, La Rosa J, Lee SH, Levy-Palomo I, Malatova M, Maruo Y, Mitchell P, Murciano IV, Nelson R, Nouredine A, Oh JS, Oregioni B, Le Petit G, Pettersson HBL, Reineking A, Smedley PA, Suckow A, van der Struijs TDB, Voors PI, Yoshimizu K, Wyse E (2007) Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment). J Radioanal Nucl Chem 273(2):383–393

  27. Child DP, Hotchkis MAC, Williams ML (2008) High sensitivity analysis of plutonium isotopes in environmental samples using accelerator mass spectrometry (AMS). J Anal At Spectrom 23(5):765–768

  28. Bergan T (2002) Radioactive fallout in Norway from atmospheric nuclear weapons tests. J Environ Radioact 60(1–2):189–208

    Article  CAS  Google Scholar 

  29. Storebø P (1968) Precipitation formation in a mountainous coast region. Tellus 20(2):239

    Article  Google Scholar 

  30. Steinnes E, Gjelsvik R (2008) Geograpical trends in Cs-137 fallout from the Chernobyl accident and leaching from natural surface soil in Norway. In: International conference on radioecology and environmental radiation. Bergen: Norwegian Radiation Protection Authority

  31. Kirchner G, Noack CC (1988) Core history and nuclide inventory of the Chernobyl core at the time of accident. Nucl Saf 29(1):1–5

  32. Beasley T, Kelley J, Orlandini K, Bond L, Aarkrog A, Trapeznikov A, Pozolotina V (1998) Isotopic Pu, U, and Np signatures in soils from Semipalatinsk-21, Kazakh Republic and the Southern Urals, Russia. J Env Radioact 39(2):215–230

Download references

Acknowledgments

This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 421048. We are indebted to Signe Dahl for kind assistance with the layout. Keith Fifield, Stephen G. Tims and Deborah Oughton for AMS beam time and assistance with the analysis of heavier Pu isotopes in the humic surface soil samples. Finally, we would like to thank the two anonymous reviewers for carefully reading the manuscript and suggesting valuable improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Wendel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendel, C.C., Skipperud, L., Lind, O.C. et al. Source attribution of Pu deposited on natural surface soils. J Radioanal Nucl Chem 304, 1243–1252 (2015). https://doi.org/10.1007/s10967-015-3963-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-3963-2

Keywords

Navigation