Skip to main content
Log in

Nuclear data for medical radionuclides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radionuclides are used in medicine both for diagnosis and therapy. The radioactive decay data play a key role in the choice of a radionuclide for a certain application. The nuclear reaction data, on the other hand, allow to optimise the production route of a chosen radionuclide. The status of nuclear data of the commonly used diagnostic and therapeutic radionuclides is reviewed and the recent efforts to standardise those data are described. The expected specific activity of the cyclotron produced 99mTc is briefly discussed. The present efforts are devoted to development of non-standard positron emitters (e.g. 64Cu, 86Y, etc.) and low-range highly-ionising therapeutic radionuclides (e.g. 67Cu, 225Ac, etc.). The need of intermediate-energy multiple-particle accelerating cyclotrons is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qaim SM (1982) Nuclear data relevant to the production and application of diagnostic radionuclides. Radiochim Acta 30:147–162

    CAS  Google Scholar 

  2. Qaim SM (2001) Nuclear data relevant to the production and application of diagnostic radionuclides. Radiochim Acta 89:223–232

    CAS  Google Scholar 

  3. Qaim SM (2001) Therapeutic radionuclides and nuclear data. Radiochim Acta 89:297–302

    CAS  Google Scholar 

  4. Qaim SM (2012) The present and future of medical radionuclide production. Radiochim Acta 100:635–651

    Article  CAS  Google Scholar 

  5. Qaim SM (2013) New trends in nuclear data research for medical radionuclide production. Radiochim Acta 101:473–480

    Article  CAS  Google Scholar 

  6. Nichols AL (2012) Radioactive decay data: powerful aids in medical diagnosis and therapy, analytical science and other applications. Radiochim Acta 100:615–634

    Article  CAS  Google Scholar 

  7. Nichols AL, Qaim SM, Capote Noy R (2011) Summary report of technical meeting on intermediate-term nuclear data needs for medical applications: cross sections and decay data. IAEA Report INDC (NDS)-0596, IAEA, Vienna

  8. Handbook on photonuclear data for applications: cross sections and spectra (2000) IAEA-TECDOC-1178, IAEA, Vienna

  9. Gul K, Hermanne A, Mustafa MG, Nortier FM, Oblozinsky P, Qaim SM, Scholten B, Shubin Yu, Takács S, Tárkányi FT, Zhuang Y (2001) Charged particle cross section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC-1211.pp 1–285

  10. Qaim SM, Steyn GF, Spahn I, Spellerberg S, van der Walt TN, Coenen HH (2007) Yield and purity of 82Sr produced via the natRb(p, xn)82Sr process. Appl Radiat Isot 65:247–252

    Article  CAS  Google Scholar 

  11. Adam-Rebeles R, Hermanne A, van den Winkel P, De Vis L, Waegeneer R, Tárkányi F, Takács S, Takács MP (2013) 68Ge/68Ga production revisited: new excitation curves, target preparation and chemical separation-purification. Radiochim Acta 101:481–489

    CAS  Google Scholar 

  12. Ruth TJ, Wolf AP (1979) Absolute cross sections for the production of 18F via the 18O(p, n)18F reaction. Radiochim Acta 26:21–24

    CAS  Google Scholar 

  13. Hess E, Takács S, Scholten B, Tárkányi F, Coenen HH, Qaim SM (2001) Excitation function of the 18O(p, n)18F nuclear reaction from threshold up to 30 MeV. Radiochim Acta 89:352–362

    Article  Google Scholar 

  14. Qaim SM, Tárkányi F, Capote R (eds) (2011) Nuclear data for the production of therapeutic radionuclides. IAEA Techn. Reports Series No. 473, Vienna, pp 1–358

  15. Aslam MN, Qaim SM (2014) Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl Radiat Isot 89:65–73

    Article  CAS  Google Scholar 

  16. Abbas K, Holzwarth U, Simonelli F, Kozempel J, Cydzik I, Bulgheroni A, Cotogno G, Apostolidis C, Bruchertseifer F, Morgenstern A (2012) Feasability of 99Mo production by proton-induced fission of 232Th. Nucl Instrum Methods B 278:20–25

    Article  CAS  Google Scholar 

  17. Crasta R, Naik H, Suryanarayana SV, Prajapati PM, Jagadisan KC, Thakara SV, Ganesh S, Nimje VT, Mittal KC, Goswami A (2011) Photo-neutron cross section of 99Mo. J Radioanal Nucl Chem 290:367–373

    Article  CAS  Google Scholar 

  18. Qaim SM (1972) Activation cross sections, isomeric cross section ratios and systematics of (n,2n) reactions at 14–15 MeV. Nucl Phys A 185:614–624

    Article  CAS  Google Scholar 

  19. Nagai Y, Hatsukawa Y (2009) Production of 99Mo for nuclear medicine by 100Mo(n,2n)99Mo. J Phys Soc Jpn 78:033201 Letter

    Article  Google Scholar 

  20. Tárkányi F, Hermanne A, Takács S, Sonck M, Szücs Z, Kiraly B, Ignatyuk AV (2011) Deuteron induced reactions on 100Mo. Appl Radiat Isot 69:18–25

    Article  Google Scholar 

  21. Scholten B, Lambrecht RM, Cogneau M, Vera Ruiz H, Qaim SM (1999) Investigation of alternative production routes of 99mTc: excitation functions for the cyclotron production of 99mTc and 99Mo. Appl Radiat Isot 51:69–80

    Article  CAS  Google Scholar 

  22. Lebeda O, Pruszynski M (2010) New measurements of excitation functions for (p, x) reactions on natMo with special regard to the formation of 95mTc, 99mTc and 99Mo. Appl Radiat Isot 68:2355–2365

    Article  CAS  Google Scholar 

  23. Gagnon K, Bénard F, Kovacs M, Ruth TJ, Schaffer P, Wilson JS, McQuerrie SA (2011) Cyclotron production of 99mTc: experimental measurement of the 100Mo(p, x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nucl Med Biol 38:907–916

    Article  CAS  Google Scholar 

  24. Tárkányi F, Ditrói F, Hermanne A, Takács S, Ignatyuk AV (2012) Investigation of activation cross-sections of proton induced nuclear reactions on natMo up to 40 MeV: new data and evaluation. Nucl Instrum Methods B 280:45–73

    Article  Google Scholar 

  25. Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of excitation functions of 100Mo(p, d + pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot 85:101–113

    Article  CAS  Google Scholar 

  26. Hohn A, Coenen HH, Qaim SM (2000) Positron emission intensity in the decay of 120gI. Radiochim Acta 52:139–141

    Google Scholar 

  27. Qaim SM, Hohn A, Bastian Th, El-Azoney KM, Blessing G, Spellerberg S, Scholten B, Coenen HH (2003) Some optimisation studies relevant to the production of high-purity 124I and 120gI at a small-sized cyclotron. Appl Radiat Isot 58:69–78

    Article  CAS  Google Scholar 

  28. Qaim SM, Bisinger T, Hilger K, Nayak D, Coenen HH (2007) Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim Acta 95:67–73

    CAS  Google Scholar 

  29. Qaim SM (2008) Decay data and production yields of some non-standard positron emitters used in positron emission tomography. Q J Nucl Med Mol Imaging 52:111–120

    CAS  Google Scholar 

  30. Qaim SM (2011) Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim Acta 99:611–625

    Article  CAS  Google Scholar 

  31. Scholten B, Kovács Z, Tárkányi F, Qaim SM (1995) Excitation functions of 124Te(p, xn)123,124I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron. Appl Radiat Isot 46:255–259

    Article  CAS  Google Scholar 

  32. Bastian T, Coenen HH, Qaim SM (2001) Excitation functions of 124Te(d, xn)124,125I reactions from threshold up to 14 MeV: comparative evaluation of nuclear routes for the production of 124I. Appl Radiat Isot 55:303–308

    Article  CAS  Google Scholar 

  33. Hohn A, Nortier FM, Scholten B, van der Walt TN, Coenen HH, Qaim SM (2001) Excitation functions of 125Te(p, xn)-reactions from their respective thresholds up to 100 MeV with special reference to the production of 124I. Appl Radiat Isot 55:149–156

    Article  CAS  Google Scholar 

  34. Aslam MN, Sudár S, Hussain M, Malik AA, Qaim SM (2010) Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124. Appl Radiat Isot 68:1760–1773

    Article  CAS  Google Scholar 

  35. Aslam MN, Sudár S, Hussain M, Malik AA, Qaim SM (2011) Evaluation of excitation functions of 3He- and α-particle induced reactions on antimony isotopes with special relevance to the production of iodine-124. Appl Radiat Isot 69:94–110

    Article  CAS  Google Scholar 

  36. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot 44:575–580

    Article  Google Scholar 

  37. Rebeles RA, Van den Winkel P, Hermanne A, Tárkányi F (2009) New measurement and evaluation of the excitation function of 64Ni(p, n) reaction for the production of 64Cu. Nucl Instrum Methods B 267:457–461

    Article  Google Scholar 

  38. Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM (2009) Charged particle induced reaction cross section data for production of the emerging medically important positron emitters 64Cu: a comprehensive evaluation. Radiochim Acta 97:669–686

    Article  CAS  Google Scholar 

  39. Rösch F, Qaim SM, Stöcklin G (1993) Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n)- and natRb(3He, xn)-processes. Radiochim Acta 61:1–8

    Google Scholar 

  40. Rösch F, Qaim SM (1996) Nuclear data relevant to the production of the positron emitting technetium isotope 94mTc via the 94Mo(p, n)-reaction. Radiochim Acta 62:115–121 Erratum 75, 227 (1993)

    Google Scholar 

  41. Hohn A, Coenen HH, Qaim SM (1998) Nuclear data relevant to the production of 120gI via the 120Te(p, n)-process at a small-sized cyclotron. Appl Radiat Isot 49:1493–1496

    Article  CAS  Google Scholar 

  42. Smith NA, Bowers DL, Ehst DA (2012) The production, separation and use of 67Cu for radioimmunotherapy: a review. Appl Radiat Isot 70:2377–2383

    Article  CAS  Google Scholar 

  43. Hilgers K, Stoll T, Skakun YuN, Coenen HH, Qaim SM (2003) Cross section measurements of the nuclear reactions natZn(d, x)64Cu, 66Zn(d, α)64Cu and 68Zn(p, αn)64Cu for production of 64Cu and technical developments for small scale production of 67Cu via the 70Zn(p, α)67Cu process. Appl Radiat Isot 59:343–351

    Article  CAS  Google Scholar 

  44. Stoll T, Kastleiner S, Shubin YuN, Coenen HH, Qaim SM (2002) Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim Acta 90:309–313

    Article  CAS  Google Scholar 

  45. Bonardi ML, Groppi F, Mainardi HS, Kokhanyuk VM, Lapsina EV, Mebel MV, Zhuikov BL (2005) Cross section studies on 64Cu with zinc target in the proton energy range from 141 down to 31 MeV. J. Radioanal Nucl Chem 264:101–105

    Article  CAS  Google Scholar 

  46. Szelecsényi F, Steyn GF, Dolley SG, Kovács Z, Vermeulen C, van der Walt TN (2009) Investigation of the 68Zn(p,2p)67Cu nuclear reaction: new measurements up to 40 MeV and compilation up to 100 MeV. Nucl Instrum Methods B 267:1877–1881

    Article  Google Scholar 

  47. Medvedev DG, Mausner LF, Meinken GE, Kurczak SO, Schnakenberg H, Dodge CJ, Korach EM, Srivastava SC (2012) Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl Radiat Isot 70:423–429

    Article  CAS  Google Scholar 

  48. Kozempel J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012) Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim Acta 100:419–423

    Article  CAS  Google Scholar 

  49. Skakun Y, Qaim SM (2004) Excitation function of the 64Ni(α, p)67Cu reaction for production of 67Cu. Appl Radiat Isot 60:33–39

    Article  CAS  Google Scholar 

  50. Starovaitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39–44

    Article  Google Scholar 

  51. Uddin MS, Zaman MR, Hossain SM, Qaim SM (2014) Radiochemical measurement of neutron-spectrum averaged cross sections for the formation of 64Cu and 67Cu via the (n, p) reaction at a TRIGA Mark-II reactor: feasibility of simultaneous production of the theragnostic pair 64Cu/67Cu. Radiochim Acta 102:473–480

    CAS  Google Scholar 

  52. Molla NI, Qaim SM (1977) A systematic study of (n, p) reactions at 14.7 MeV. Nucl Phys A 283:269–288

    Article  Google Scholar 

  53. Miyahara H, Wurdiyanto G, Nagata H, Yoshida A, Yanagida K, Mori C (2000) Precise measurements of the gamma-ray emission probabilities of 186Re and 188Re. Appl Radiat Isot 52:573–579

    Article  CAS  Google Scholar 

  54. Tárkányi F, Takács S, Szelecsényi F, Ditrói F, Hermanne A, Snock M (2006) Excitation functions of proton induced nuclear reactions on natural tungsten up to 34 MeV. Nucl Instrum Methods Phys Res B 252:160–174

    Article  Google Scholar 

  55. Tárkányi F, Hermanne A, Takács S, Ditrói F, Kovalev F, Ignatyuk AV (2007) New measurements and evaluation of excitation function of the 186 W(p, n) nuclear reaction for production of the therapeutic radioisotope 186Re. Nucl Instrum Methods Phys Res B264:389–394

    Article  Google Scholar 

  56. Lapi S, Mills WJ, Wilson J, McQuarrie S, Publicover J, Schueller M, Schlyer D, Ressler JJ, Ruth TJ (2007) Production cross sections of 181–186Re isotopes from proton bombardment of natural tungsten. Appl Radiat Isot 65:345–349

    Article  CAS  Google Scholar 

  57. Khandaker MU, Uddin MS, Kim K, Lee MW, Kim KS, Lee YS, Kim GN, Cho YS, Lee YO (2008) Excitation functions of proton induced nuclear reactions on natW up to 40 MeV. Nucl Instrum Methods Phys Res B 266:1021–1029

    Article  CAS  Google Scholar 

  58. Ishioka NS, Watanabe S, Osa A, Koizumi M, Matsuoka ST (2002) Excitation functions of rhenium isotopes on the natW(d, xn) reactions and production of no-carrier added 186Re. J Nucl Sci Technol Suppl 2:1334–1337

    Google Scholar 

  59. Tárkányi F, Takács S, Szelecsényi F, Ditrói F, Hermanne A, Sonck M (2003) Excitation functions of deuteron induced nuclear reactions on natural tungsten up to 50 MeV. Nucl Instrum Methods Phys Res B 211:319–330

    Article  Google Scholar 

  60. Hussain M, Sudár S, Aslam MN, Malik AA, Ahmad R, Qaim SM (2010) Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide 186Re. Radiochim Acta 98:385–395

    Article  CAS  Google Scholar 

  61. Bonardi ML, Groppi F, Manenti S, Persico E, Gini L, Abbas K, Holzwarth U, Simonelli F, Alfassi ZB (2010) Production study of high specific activity NCA Re-186 g by proton and deuteron cyclotron irradiation. Appl Radiat Isot 68:1595–1601

    Article  CAS  Google Scholar 

  62. Fassbender ME, Ballard B, Birnbaum ER, Engle JW, John KD, Maassen JR, Nortier FM, Lenz JW, Cutler CS, Ketring AR, Jurisson SS, Wilbur DS (2013) Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity 186gRe using WO3 targtes. Radiochim Acta 101(5):339–346

    Article  CAS  Google Scholar 

  63. Manenti S, Persico E, Abbas K, Bonardi M, Gini L, Groppi F, Holzwarth U, Simonelli F (2014) Excitation functions and yields for cyclotron production of radiorhenium via deuteron irradiation: natW(d, xn)181,182(A+B),183,184(m+g),186gRe nuclear reactions and tests on the production of 186gRe using enriched 186W. Radiochim Acta 102:669–680

    Article  CAS  Google Scholar 

  64. Pommé S, Marouli M, Suliman G, Dikmen H, Ammel RV, Jobbagy V, Dirican A, Stroh H, Paepen J, Bruchertseifer F, Apostolidis C, Morgenstern A (2012) Measurement of the 225Ac half-life. Appl Radiat Isot 70:2608–2614

    Article  Google Scholar 

  65. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A (2005) Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem 77:6288–6291

    Article  CAS  Google Scholar 

  66. Apostolidis C, Molinet R, McGinley J, Abbas K, Möllenbeck J, Morgenstern A (2005) Cyclotron production of 225Ac for targeted alpha therapy. Appl Radiat Isot 62:383–387

    Article  CAS  Google Scholar 

  67. Ermolaev SV, Zhuikov BL, Kokhanyuk VM, Matushko VL, Kalmykov SN, Aliev RA, Tananaev IG, Myasoudov BF (2012) Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim Acta 100:223–229

    Article  CAS  Google Scholar 

  68. Weidner JW, Mashnik SG, John KD, Hemez F, Ballard BD, Bach H, Birnbaum ER, Bitteker LJ, Couture A, Dry D, Fassbender ME, Nortier FM (2012) Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl Radiat Isot 70:2602–2607

    Article  CAS  Google Scholar 

  69. Engle JW, Weidner JW, Ballard BD, Fassbender ME, Hudston LA, Jackman KR, Dry DE, Wolfsberg LE, Bitteker LJ, Ullmann JL, Gulley MS, Pillai C, Goff G, Birnbaum ER, John KD, Mashnik SG, Nortier FM (2014) Ac, La and Ce radioimpurities in 225Ac produced in 40–200 MeV proton irradiations of thorium. Radiochim Acta 102:569–581

    Article  CAS  Google Scholar 

  70. Fukushima S, Hayashi S, Kume S, Okamura H, Otozai K, Sakamoto K, Tsujino R, Yoshizawa Y (1963) The production of high specific activities of tin. Bull Chem Soc Jpn 36:1225–1228

    Article  CAS  Google Scholar 

  71. Qaim SM, Döhler H (1984) Production of carrier-free 117mSn. Int J Appl Radiat Isot 35:645–650

    Article  CAS  Google Scholar 

  72. Montgomery DM, Porile NT (1969) Reactions of 116Cd with intermediate energy 3He and 4He ions. Nucl. Phys A130:65–76

    Article  Google Scholar 

  73. Sudár S, Qaim SM (1996) Isomeric cross section ratio for the formation of 58m, gCo in neutron, proton, deuteron and α-particle induced reactions in the energy region up to 25 MeV. Phys Rev C53:2885–2892

    Google Scholar 

  74. Sudár S, Qaim SM (2006) Cross sections for the formation of 195m,gHg, 197m,gHg and 196m,gAu in alpha and 3He-particle induced reactions on Pt: effect of level density parameter on the calculated isomeric cross section ratio. Phys Rev C73(064608):1–8

    Google Scholar 

  75. Uddin MS, Sudár S, Qaim SM (2011) Formation of the isomeric pair 194m,gIr in interactions of α-particles with 192Os. Phys Rev C84(024605):1–5

    Google Scholar 

  76. Hermanne A, Daraban L, Adam Rebeles R, Ignatyuk A, Tárkányi F, Takács S (2010) Alpha induced reactions on natCd up to 38.5 MeV: experimental and theoretical studies of the excitation functions. Nucl Instrum Methods Phys Res B268:1376–1399

    Article  Google Scholar 

  77. Adam Rebeles R, Hermanne A, Van den Winkel P, Tárkányi F, Takács S, Daraban L (2008) Alpha induced reactions on 114Cd and 116Cd: an experimental study of excitation functions. Nucl Istrum Methods Phys Res B266:4731–4737

    Article  Google Scholar 

  78. Hilgers K, Coenen HH, Qaim SM (2008) Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via α-particle induced reactions on 192Os. Appl Radiat Isot 66:545–551

    Article  CAS  Google Scholar 

  79. Uddin MS, Scholten B, Hermanne A, Sudár S, Coenen HH, Qaim SM (2010) Radiochemical determination of cross sections of alpha particle induced reactions on 192Os for the production of the therapeutic radionuclide 193mPt. Appl Radiat Isot 68:2001–2006

    Article  CAS  Google Scholar 

  80. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE (1993) Pharmacokinetics of 86Y-citrate in a patient with multiple bone metastases measured with PET and calculation of radiation dose in 90Y-citrate radiotherapy. J Nucl Med 34:2222–2226

    CAS  Google Scholar 

  81. Klein ATJ, Rösch F, Qaim SM (2000) Investigation of the 50Cr(d, n)51Mn and natCr(p, x)51Mn processes with respect to the production of the positron emitter 51Mn. Radiochim Acta 88:253–264

    Article  CAS  Google Scholar 

  82. Buchholz M, Spahn I, Scholten B, Coenen HH (2013) Cross section measurements for the formation of manganese-52 and its isolation with a non-hazardous eluent. Radiochim Acta 101:491–499

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. B. Scholten for a useful discussion and Mr. S. Spellerberg for help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Qaim.

Additional information

This article is based on a Plenary Lecture given by the author at the 8th International Conference on Isotopes and EXPO, Chicago, USA, August 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaim, S.M. Nuclear data for medical radionuclides. J Radioanal Nucl Chem 305, 233–245 (2015). https://doi.org/10.1007/s10967-014-3923-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3923-2

Keywords

Navigation